Skip to main content
Log in

Ultralow-power dielectric-modulated nanogap-embedded sub-20-nm TGRC-MOSFET for biosensing applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This work examines a transparent gate recessed channel (TGRC) metal–oxide–semiconductor field-effect transistor (MOSFET) for biosensing, including a nanogap cavity for detection of biomolecules and a transparent gate to enhance the overall current efficiency of the RC-MOSFET. For the detection of neutral biomolecules, electrical characteristics such as ION/IOFF, shift in threshold voltage and change in surface potential have been studied and thereafter, sensitivity of has been evaluated. The biosensor showed enhanced sensitivity for biomolecules with increase in their dielectric value, due to greater on-current owing to the change in capacitances. The capacitances were therefore also evaluated. In addition, immobilization of biomolecules degrades the noise immunity of MOSFET and thereby their overall biosensing performance, while the noise immunity of the TGRC device was very high even in the presence of biomolecules. Furthermore, modulation of the cavity gap length was also investigated, revealing that its increase (from 8 to 20 nm) significantly enhanced the sensitivity of the proposed biosensor. Overall, the results of this analysis reveal that such TGRC-MOSFET biosensors can exhibit high sensitivity (1.45) at very low drain bias (0.2 V), enabling their use for biosensor applications to diagnose various diseases which require lower noise, high speed, low power, and high density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Comini, E., Baratto, C., Concina, I., Faglia, G., Falasconi, M., Ferroni, M., Galstyan, V., Gobbi, E., Ponzoni, A., Vomiero, A., Zappa, D., Sberveglieri, V., Sberveglieri, G.: Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators B Chem. 179, 3–20 (2013)

    Article  Google Scholar 

  2. Lee, J., Jang, J., Choi, B., Yoon, J., Kim, J.-Y., Choi, Y.-K., Kim, D.M., Kim, D.H., Choi, S.-J.: A highly responsive silicon nanowire/amplifier MOSFET hybrid biosensor. Sci. Rep. 5, 12286 (2015)

    Article  Google Scholar 

  3. Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)

    Article  Google Scholar 

  4. Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., Zhang, W.: Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 36(3), 465–481 (2016)

    Google Scholar 

  5. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    Article  Google Scholar 

  6. Vu, X.T., Eschermann, J.F., Stockmann, R., GhoshMoulick, R., Offenhäusser, A., Ingebrandt, S.: Top-down processed silicon nanowire transistor arrays for biosensing. Phys. Status Solidi 206(3), 426–434 (2009)

    Article  Google Scholar 

  7. Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)

    Article  Google Scholar 

  8. Chandan, B.V., Nigam, K., Sharma, D.: Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection. Micro Nano Lett. 13(4), 452–456 (2018)

    Article  Google Scholar 

  9. Kanungo, S., Chattopadhyay, S., Gupta, P.S., Sinha, K., Rahaman, H.: Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)

    Article  Google Scholar 

  10. Azmi, M.M., Tehrani, Z., Lewis, R., Walker, K.-A., Jones, D., Daniels, D., Doak, S., Guy, O.: Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens. Bioelectron. 52, 216–224 (2014)

    Article  Google Scholar 

  11. Ahn, J.-H., Choi, S.-J., Han, J.-W., Park, T.J., Lee, S.Y., Choi, Y.-K.: Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 10(8), 2934–2938 (2010)

    Article  Google Scholar 

  12. Gao, A., Lu, N., Dai, P., Li, T., Pei, H., Gao, X., Gong, Y., Wang, Y., Fan, C.: Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 11(9), 3974–3978 (2011)

    Article  Google Scholar 

  13. Barsan, R.M.: Analysis and modeling of dual-gate MOSFET’s. IEEE Trans. Electron Devices 28(5), 523–534 (1981)

    Article  Google Scholar 

  14. Gupta, N., Chaujar, R.: Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A 122(8), 1–9 (2016)

    Google Scholar 

  15. Gupta, N., Chaujar, R.: Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of gate stack (GS)-GEWE-SiNW MOSFET. Superlattices Microstruct. 97, 630–641 (2016)

    Article  Google Scholar 

  16. Gupta, N., Chaujar, R.: Investigation of temperature variations on analog/RF and linearity performance of stacked gate GEWE-SiNW MOSFET for improved device reliability. Microelectron. Reliab. 64, 235–241 (2016)

    Article  Google Scholar 

  17. Gupta, N., Kumar, A., Chaujar, R.: Oxide bound impact on hot-carrier degradation for gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. Microsyst. Technol. 22, 2655–2664 (2015)

    Article  Google Scholar 

  18. Chaujar, R., Kaur, R., Saxena, M., Gupta, M., Gupta, R.: TCAD assessment of gate electrode workfunction engineered recessed channel (GEWE-RC) MOSFET and its multilayered gate architecture—part I: hot-carrier-reliability evaluation. IEEE Trans. Electron Devices 55(10), 2602–2613 (2008)

    Article  Google Scholar 

  19. Chaujar, R., Kaur, R., Saxena, M., Gupta, M., Gupta, R.: Laterally amalgamated DUal material GAte concave (L-DUMGAC) MOSFET for ULSI. Microelectron. Eng. 85(3), 566–576 (2008)

    Article  Google Scholar 

  20. Kumar, A., Gupta, N., Chaujar, R.: Analysis of novel transparent gate recessed channel (TGRC) MOSFET for improved analog behaviour. Microsyst. Technol. 22(11), 2665–2671 (2016)

    Article  Google Scholar 

  21. Kumar, A., Gupta, N., Chaujar, R.: Power gain assessment of ITO based transparent gate recessed channel (TGRC) MOSFET for RF/wireless applications. Superlattices Microstruct. 91, 290–301 (2016)

    Article  Google Scholar 

  22. Kumar, A., Gupta, N., Chaujar, R.: TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron. J. 49, 36–42 (2016)

    Article  Google Scholar 

  23. Kumar, A., Gupta, N., Chaujar, R.: Effect of structured parameters on the hot-carrier immunity of transparent gate recessed channel (TGRC) MOSFET. Microsyst. Technol. 23, 4057–4064 (2017)

    Article  Google Scholar 

  24. Kumar, A., Tripathi, M., Chaujar, R.: Reliability issues of In2O5Sn gate electrode recessed channel MOSFET: impact of interface trap charges and temperature. IEEE Trans. Electron Devices 65, 860–866 (2018)

    Article  Google Scholar 

  25. Kumar, A., Tripathi, M., Chaujar, R.: In2O5 Sn based transparent gate recessed channel MOSFET: RF small-signal model for microwave applications. AEU-Int. J. Electron. Commun. (2018)

  26. Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005)

    Article  MathSciNet  Google Scholar 

  27. Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)

    Article  Google Scholar 

  28. Densmore, A., Xu, D.-X., Janz, S., Waldron, P., Mischki, T., Lopinski, G., Delâge, A., Lapointe, J., Cheben, P., Lamontagne, B.: Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)

    Article  Google Scholar 

  29. Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703 (2012)

    Article  Google Scholar 

  30. Davidson, I., Malkinson, M., Strenger, C., Becker, Y.: An improved ELISA method, using a streptavidin-biotin complex, for detecting Marek’s disease virus antigens in feather-tips of infected chickens. J. Virol. Methods 14(3–4), 237–241 (1986)

    Article  Google Scholar 

  31. Zhang, G.-J., Zhang, L., Huang, M.J., Luo, Z.H.H., Tay, G.K.I., Lim, E.-J.A., Kang, T.G., Chen, Y.: Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 146(1), 138–144 (2010)

    Article  Google Scholar 

  32. Silvaco, I.: ATLAS User’s Manual, Santa Clara, CA, Ver 5 (2011)

  33. Appenzeller, J., Martel, R., Avouris, P., Knoch, J., Scholvin, J., del Alamo, J.A., Rice, P., Solomon, P.: Sub-40 nm SOI V-groove n-MOSFETs. IEEE Electron Device Lett. 23(2), 100–102 (2002)

    Article  Google Scholar 

  34. Kannan, N., Kumar, M.J.: Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)

    Article  Google Scholar 

  35. Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)

    Article  Google Scholar 

  36. Abdi, D.B., Kumar, M.J.: Dielectric modulated overlapping gate-on-drain tunnel-FET as a label-free biosensor. Superlattices Microstruct. 86, 198–202 (2015)

    Article  Google Scholar 

  37. Kranti, A., Armstrong, G.A.: Engineering source/drain extension regions in nanoscale double gate (DG) SOI MOSFETs: analytical model and design considerations. Solid-State Electron. 50(3), 437–447 (2006)

    Article  Google Scholar 

  38. Stern, E., Vacic, A., Reed, M.A.: Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron Devices 55(11), 3119–3130 (2008)

    Article  Google Scholar 

  39. Kumar, A., Tripathi, M., Chaujar, R.: Investigation of parasitic capacitances of In2O5Sn gate electrode recessed channel MOSFET for ULSI switching applications. Microsyst. Technol. 23, 5867–5874 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grants Commission (UGC) for provision of financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Chaujar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Tripathi, M.M. & Chaujar, R. Ultralow-power dielectric-modulated nanogap-embedded sub-20-nm TGRC-MOSFET for biosensing applications. J Comput Electron 17, 1807–1815 (2018). https://doi.org/10.1007/s10825-018-1237-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1237-2

Keywords

Navigation