Skip to main content
Log in

Moving mesh adaptation for Si and GaN-based power device simulation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we describe the development of moving mesh adaptation framework and its application to charge transport simulation of semiconductor devices, with emphasis on its relevance to power semiconductor devices. Mesh adaptivity in the context of semiconductor device simulation is an important problem and can help deal with the convergence and numerical stability issues, as well as automate the meshing process. We demonstrate the efficacy of our proposed meshing scheme through the simulation of a GaN-based power diode, as well as a Si diode with a non-rectangular doping profile, by externally coupling our framework to Sentaurus Device TCAD. We perform error analysis and compare our results with simulations based on high-resolution uniform structured meshes as well as manually refined axis-aligned meshes. In addition to the benefits in terms of accuracy, automation, and generality, our method can be regarded as a stepping stone toward computationally scalable and adaptive semiconductor device simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carey, G.F.: Computational Grids: Generations, Adaptation & Solution Strategies. CRC Press, Baca Raton (1997)

    Google Scholar 

  2. Loseille, A.: Unstructured mesh generation and adaptation. Handb. Numer. Anal. 18, 263 (2017). https://doi.org/10.1016/bs.hna.2016.10.004

    Article  MathSciNet  MATH  Google Scholar 

  3. Alauzet, F., Loseille, A.: A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Compu. Aided Des. 72, 13 (2016). https://doi.org/10.1016/j.cad.2015.09.005

    Article  MathSciNet  Google Scholar 

  4. Carey, G.F., Schmidt, J., Sharma, M.: Computational electronics. In: Hess, K., Leburton, J.P., Ravaioli, U. (eds.) Springer International Series in Engineering and Computer Science, vol. 113, pp. 37–41. Springer, Berlin (1991). https://doi.org/10.1007/978-1-4757-2124-9_6

    Chapter  Google Scholar 

  5. Son, I., Tang, T.W., Eydeland, A.: Computational electronics. In: Hess. K., Leburton, J.P., Ravaioli, U. (eds.) The Springer International Series in Engineering and Computer Science, pp. 33–36. Springer, Boston, MA (1991). https://doi.org/10.1007/978-1-4757-2124-9_5

    Chapter  Google Scholar 

  6. Schmithsen, B.: Grid adaptation for the stationary two-dimensional drift-diffusion model in semiconductor device simulation. Ph.D. thesis (2002)

  7. Hecht, F., Marrocco, A.: Mesh Adaption and Numerical Simulation of Semiconductor Devices, ECCOMAS-2000. Barcelona, Spain (2000)

  8. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, Berlin (2010)

    MATH  Google Scholar 

  9. Hecht, F.: BAMG: bidimensional anisotropic mesh generator, User Guide. INRIA, Rocquencourt (1998)

  10. Sentaurus Device User’s Guide. Synopsys (2016)

  11. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998(2002)). AIAA Standards, American Institute of Aeronautics and Astronautics, Inc. (1998). https://doi.org/10.2514/4.472855

  12. Schlömer, N.: quadpy: Numerical integration (quadrature, cubature) in Python (2018). https://github.com/nschloe/quadpy

  13. Sabui, G., Parbrook, P.J., Arredondo-Arechavala, M., Shen, Z.J.: Modeling and simulation of bulk gallium nitride power semiconductor devices. AIP Adv. 6(5), 055006 (2016). https://doi.org/10.1063/1.4948794

    Article  Google Scholar 

  14. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elements Anal. Des. 46(1–2), 181 (2010). https://doi.org/10.1016/j.finel.2009.06.028

    Article  MathSciNet  Google Scholar 

  15. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575 (2014). https://doi.org/10.1142/S0218202514400041

    Article  MathSciNet  MATH  Google Scholar 

  16. Bochev, P., Peterson, K., Gao, X.: A new control volume finite element method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids. Comput. Methods Appl. Mech. Eng. 254, 126 (2013). https://doi.org/10.1016/j.cma.2012.10.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309 (2009). https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  18. Si, H.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1 (2015). https://doi.org/10.1145/2629697

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawad Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, F., Sarker, P., Mohamed, M. et al. Moving mesh adaptation for Si and GaN-based power device simulation. J Comput Electron 17, 1621–1629 (2018). https://doi.org/10.1007/s10825-018-1218-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1218-5

Keywords

Navigation