A tetracene-based single-electron transistor as a chlorine sensor


An organic molecular single-electron transistor (SET) based on a tetracene quantum dot has been modeled and employed for sensing of chlorine gas, within the framework of density functional theory. The sensing behavior of the SET is estimated through a charge-stability diagram and total energy as a function of gate potential (TE vs. Vg) for varying distances of chlorine from the SET quantum dot, which could be used as an electronic fingerprint for detection. The better sensing ability, high power efficiency and large operational temperature range of tetracene SET, in comparison to conventional sensors, makes it a very powerful candidate for a chlorine gas sensor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Winkelmann, C.B., Roch, N., Wernsdorfer, W., Bouchiat, V., Balestro, F.: Superconductivity in a single-C60 transistor. Nat. Phys. 5(12), 876–879 (2009)

    Article  Google Scholar 

  2. 2.

    Kubatkin, S., et al.: Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959), 698–701 (2003)

    Article  Google Scholar 

  3. 3.

    SanthiBhushan, B., Khan, M.S., Srivastava, A., Khan, M.S.: First principle analysis of (10-boranylanthracene-9-yl) borane based molecular single-electron transistor for high-speed low-power electronics. IEEE Trans. Electron Device 63(03), 1232–1238 (2016)

    Article  Google Scholar 

  4. 4.

    Fuechsle, M., et al.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)

    Article  Google Scholar 

  5. 5.

    Srivastava, A., et al.: Influence of boron substitution on conductance of pyridine and pentane-based molecular single electron transistors: first-principles analysis. J. Electron. Mater. 45(4), 2233–2241 (2016)

    Article  Google Scholar 

  6. 6.

    Folsch, S., Martinez-Blanco, J., Yang, J., Kanisawa, K., Erwin, S.C.: Quantum dots with single-atom precision. Nat. Nanotechnol. 9(7), 505–508 (2014)

    Article  Google Scholar 

  7. 7.

    Srivastava, A., Santhibhushan, B., Dobwal, P.: Charge stability and conductance analysis of anthracene-based single electron transistor. Int. J. Nanosci. 12(06), 1350045 (2013)

    Article  Google Scholar 

  8. 8.

    Srivastava, A., Santhibhushan, B., Dobwal, P.: Performance analysis of impurity added benzene based single-electron transistor. Appl. Nanosci. 4(3), 263–269 (2014)

    Article  Google Scholar 

  9. 9.

    Guo, Y.D., Yan, X.H., Xiao, Y.: Computational investigation of DNA detection using single-electron transistor-based nanopore. J. Phys. Chem. C 116(40), 21609–21614 (2012)

    Article  Google Scholar 

  10. 10.

    Ray, S.J.: Single molecule transistor based nanopore for the detection of nicotine. J. Appl. Phys. 116(24), 244307 (2014)

    Article  Google Scholar 

  11. 11.

    Ray, S.J.: Single molecular transistor as a superior gas sensor. J. Appl. Phys. 118(3), 034303 (2015)

    Article  Google Scholar 

  12. 12.

    Ray, S.J.: First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sens. Actuator B Chem. 222, 492–498 (2016)

    Article  Google Scholar 

  13. 13.

    Butko, Y., Chi, X., Ramirez, A.P.: Free-standing tetracene single crystal field effect transistor. Solid State Commun. 128(11), 431–434 (2003)

    Article  Google Scholar 

  14. 14.

    Morrison, L.A., Stanfield, D., Jenkins, M., Baronov, A.A., Patrick, D.L., Leger, J.M.: High performance organic field-effect transistors using ambient deposition of tetracene single crystals. Org. Electron. 33, 269–273 (2016)

    Article  Google Scholar 

  15. 15.

    De Boer, R.W.I., Klapwijk, T.M., Morpurgo, A.F.: Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83(21), 4345–4347 (2003)

    Article  Google Scholar 

  16. 16.

    Takahashi, T., Takenobu, T., Takeya, J., Iwasa, Y.: Ambipolar light-emitting transistors of a tetracene single crystal. Adv. Funct. Mater. 17(10), 1623–1628 (2007)

    Article  Google Scholar 

  17. 17.

    Santato, C., et al.: Tetracene light-emitting transistors on flexible plastic substrates. Appl. Phys. Lett. 86(14), 141106 (2005)

    Article  Google Scholar 

  18. 18.

    Odom, S.A., Parkin, S.R., Anthony, J.E.: Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett. 5(23), 4245–4248 (2003)

    Article  Google Scholar 

  19. 19.

    Atomistix ToolKit-Virtual Nanolab, Quantumwise A/S. [Online]. http://quantumwise.com/(2017). Accessed 03 Dec 2017

  20. 20.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  21. 21.

    Frisch, M.J., et al.: Gaussian 09, Revision E01. Gaussian Inc., Wallingford (2009)

    Google Scholar 

Download references


The authors are thankful to Atal Bihari Vajpayee—Indian Institute of Information Technology and Management, Gwalior for the infrastructural facilities to carry out the present research work.

Author information



Corresponding author

Correspondence to Anurag Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, B., Vinod Kumar, K., SanthiBhushan, B. et al. A tetracene-based single-electron transistor as a chlorine sensor. J Comput Electron 17, 1515–1520 (2018). https://doi.org/10.1007/s10825-018-1214-9

Download citation


  • Single-electron transistor
  • Density functional theory
  • Tetracene
  • Sensor
  • Chlorine