Journal of Computational Electronics

, Volume 17, Issue 4, pp 1515–1520 | Cite as

A tetracene-based single-electron transistor as a chlorine sensor

  • Barsha Jain
  • K. Vinod Kumar
  • B. SanthiBhushan
  • Kumar Gaurav
  • Manisha Pattanaik
  • Anurag SrivastavaEmail author


An organic molecular single-electron transistor (SET) based on a tetracene quantum dot has been modeled and employed for sensing of chlorine gas, within the framework of density functional theory. The sensing behavior of the SET is estimated through a charge-stability diagram and total energy as a function of gate potential (TE vs. Vg) for varying distances of chlorine from the SET quantum dot, which could be used as an electronic fingerprint for detection. The better sensing ability, high power efficiency and large operational temperature range of tetracene SET, in comparison to conventional sensors, makes it a very powerful candidate for a chlorine gas sensor.


Single-electron transistor Density functional theory Tetracene Sensor Chlorine 



The authors are thankful to Atal Bihari Vajpayee—Indian Institute of Information Technology and Management, Gwalior for the infrastructural facilities to carry out the present research work.


  1. 1.
    Winkelmann, C.B., Roch, N., Wernsdorfer, W., Bouchiat, V., Balestro, F.: Superconductivity in a single-C60 transistor. Nat. Phys. 5(12), 876–879 (2009)CrossRefGoogle Scholar
  2. 2.
    Kubatkin, S., et al.: Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959), 698–701 (2003)CrossRefGoogle Scholar
  3. 3.
    SanthiBhushan, B., Khan, M.S., Srivastava, A., Khan, M.S.: First principle analysis of (10-boranylanthracene-9-yl) borane based molecular single-electron transistor for high-speed low-power electronics. IEEE Trans. Electron Device 63(03), 1232–1238 (2016)CrossRefGoogle Scholar
  4. 4.
    Fuechsle, M., et al.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)CrossRefGoogle Scholar
  5. 5.
    Srivastava, A., et al.: Influence of boron substitution on conductance of pyridine and pentane-based molecular single electron transistors: first-principles analysis. J. Electron. Mater. 45(4), 2233–2241 (2016)CrossRefGoogle Scholar
  6. 6.
    Folsch, S., Martinez-Blanco, J., Yang, J., Kanisawa, K., Erwin, S.C.: Quantum dots with single-atom precision. Nat. Nanotechnol. 9(7), 505–508 (2014)CrossRefGoogle Scholar
  7. 7.
    Srivastava, A., Santhibhushan, B., Dobwal, P.: Charge stability and conductance analysis of anthracene-based single electron transistor. Int. J. Nanosci. 12(06), 1350045 (2013)CrossRefGoogle Scholar
  8. 8.
    Srivastava, A., Santhibhushan, B., Dobwal, P.: Performance analysis of impurity added benzene based single-electron transistor. Appl. Nanosci. 4(3), 263–269 (2014)CrossRefGoogle Scholar
  9. 9.
    Guo, Y.D., Yan, X.H., Xiao, Y.: Computational investigation of DNA detection using single-electron transistor-based nanopore. J. Phys. Chem. C 116(40), 21609–21614 (2012)CrossRefGoogle Scholar
  10. 10.
    Ray, S.J.: Single molecule transistor based nanopore for the detection of nicotine. J. Appl. Phys. 116(24), 244307 (2014)CrossRefGoogle Scholar
  11. 11.
    Ray, S.J.: Single molecular transistor as a superior gas sensor. J. Appl. Phys. 118(3), 034303 (2015)CrossRefGoogle Scholar
  12. 12.
    Ray, S.J.: First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sens. Actuator B Chem. 222, 492–498 (2016)CrossRefGoogle Scholar
  13. 13.
    Butko, Y., Chi, X., Ramirez, A.P.: Free-standing tetracene single crystal field effect transistor. Solid State Commun. 128(11), 431–434 (2003)CrossRefGoogle Scholar
  14. 14.
    Morrison, L.A., Stanfield, D., Jenkins, M., Baronov, A.A., Patrick, D.L., Leger, J.M.: High performance organic field-effect transistors using ambient deposition of tetracene single crystals. Org. Electron. 33, 269–273 (2016)CrossRefGoogle Scholar
  15. 15.
    De Boer, R.W.I., Klapwijk, T.M., Morpurgo, A.F.: Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83(21), 4345–4347 (2003)CrossRefGoogle Scholar
  16. 16.
    Takahashi, T., Takenobu, T., Takeya, J., Iwasa, Y.: Ambipolar light-emitting transistors of a tetracene single crystal. Adv. Funct. Mater. 17(10), 1623–1628 (2007)CrossRefGoogle Scholar
  17. 17.
    Santato, C., et al.: Tetracene light-emitting transistors on flexible plastic substrates. Appl. Phys. Lett. 86(14), 141106 (2005)CrossRefGoogle Scholar
  18. 18.
    Odom, S.A., Parkin, S.R., Anthony, J.E.: Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett. 5(23), 4245–4248 (2003)CrossRefGoogle Scholar
  19. 19.
    Atomistix ToolKit-Virtual Nanolab, Quantumwise A/S. [Online]. Accessed 03 Dec 2017
  20. 20.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  21. 21.
    Frisch, M.J., et al.: Gaussian 09, Revision E01. Gaussian Inc., Wallingford (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Materials Research Group, CNT LabABV-Indian Institute of Information Technology and ManagementGwaliorIndia
  2. 2.VLSI Design LaboratoryABV-Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations