Skip to main content
Log in

Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The electronic structure, elastic constants, and magnetic properties of lanthanum cobaltite oxide \(\hbox {La}_{4}\hbox {Co}_{3}\hbox {O}_{9}\) compound, which crystallizes in orthorhombic space group Pnma, are investigated theoretically for the first time using the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory plus Hubbard correction term (DFT \(+\) U). The calculated equilibrium lattice constants and fractional atomic coordinates are in a good agreement with available experimental data. Our result for the formation energy and elastic constants confirms that the predicted \(\hbox {La}_{4}\hbox {Co}_{3}\hbox {O}_{9}\) is mechanically stable. This compound is found to be ductile in nature in accordance with Pugh’s criteria. The anisotropy factors (\({A}_{1})\), (\({A}_{2})\), and (\({A}_{3})\) of \(\hbox {La}_{4}\hbox {Co}_{3}\hbox {O}_{9}\) material are also predicted through the elastic constants. The electronic band structures show metallic behavior; the conductivity is mostly governed by Co-3d and O-2p states. The total magnetic moments of the tetrahedral (\(\hbox {CoO}_{4})\) and octahedral (\(\hbox {CoO}_{6})\) environments are, respectively, 2.502 \(\mu _{B}\) and 2.874 \(\mu _{B}\), which are consistent with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samantaray, C.B., Sim, H., Hwang, H.: The electronic structures and optical properties of \(\text{ BaTiO }_{3}\) and \(\text{ SrTiO }_{3}\) using first-principles calculations. Microelectron. J. 36, 725–728 (2005)

    Article  Google Scholar 

  2. Samantaray, C.B., Sim, H., Hwang, H.: Electronic structure and optical properties of barium strontium titanate (\(\text{ Ba }_{x}\text{ Sr }_{1- x}\text{ TiO }_{3})\) using first-principles method\(.\). Phys. B Condens. Matter 351, 158–162 (2004)

    Article  Google Scholar 

  3. Bednorz, J., Müller, K.: \(\text{ Sr }_{1- x}\text{ Ca }_{x}\text{ TiO }_{3}\): an XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 52(25), 2289–2292 (1984)

    Article  Google Scholar 

  4. Koonce, C., Cohen, M.L., Schooley, J., Hosler, W., Pfeiffer, E.: Superconducting transition temperatures of semiconducting \(\text{ SrTiO }_{3}\). Phys. Rev. 163(2), 380–390 (1967)

    Article  Google Scholar 

  5. Frederikse, H.P.R., Thurber, W.R., Hosler, W.R.: Electronic transport in strontium titanate. Phys. Rev. 134(2A), A442–A445 (1964)

    Article  Google Scholar 

  6. Baettig, P., Schelle, C.F., LeSar, R., Waghmare, U.V., Spaldin, N.A.: Theoretical prediction of new high-performance lead-free piezoelectrics. Chem. Mater. 17(6), 1376–1380 (2005)

    Article  Google Scholar 

  7. Wang, H., Wang, B., Li, Q., Zhu, Z., Wang, R., Woo, C.H.: First-principles study of the cubic perovskites Bi M O 3 (M \(=\) Al, Ga, In, and Sc). Phys. Rev. B 75, 245209 (2007)

    Article  Google Scholar 

  8. Henrich, V.E.: The surfaces of metal oxides. Rep. Progress Phys. 48, 1481–1541 (1985)

    Article  Google Scholar 

  9. Muta, H., Kurosaki, K., Yamanaka, S.: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292–295 (2003)

    Article  Google Scholar 

  10. Tokura, Y.: Advances in Condensed Matter Science, vol. 2. Gordon and Breach, The Netherlands (2000)

    Google Scholar 

  11. Millis, A., Shraiman, B.I., Mueller, R.: Dynamic Jahn-Teller effect and colossal magnetoresistance in \(\text{ La }_{ 1- x}\) \(\text{ Sr }_{ x}\) \(\text{ MnO }_{3}\). Phys. Rev. Lett. 77(1), 175–178 (1996)

    Article  Google Scholar 

  12. Sompech, S., Srion, A., Nuntiya, A.: Synthesis of perovskite-type lanthanum cobalt oxide powders by mechanochemical activation method. Scienceasia 38, 102–107 (2012)

    Article  Google Scholar 

  13. Yang, Z., Huang, Y., Dong, B., Li, H.-L., Shi, S.-Q.: Sol–gel template synthesis and characterization of LaCoO3 nanowires. Appl. Phys. A 84(1–2), 117–122 (2006)

    Article  Google Scholar 

  14. Ohno, Y., Nagata, S., Sato, H.: Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells. Solid. State Ion. 3–4, 439–442 (1981)

    Article  Google Scholar 

  15. Fu, L., Li, J.F.: Preparation and thermoelectric properties of LaCoO3 ceramics. Key Eng. Mater. 434–435, 404–408 (2010)

    Article  Google Scholar 

  16. Hansteen, O.H., Fjellvåg, H., Hauback, B.C.: Crystal structure and magnetic properties of La2Co2O5. J. Solid State Chem. 141(2), 411–417 (1998)

    Article  Google Scholar 

  17. Hansteen, O.H., Fjellvåg, H., Hauback, B.C.: Crystal structure, thermal and magnetic properties of \(\text{ La }_{ 3}\text{ Co }_{3}\text{ O }_{8}\). Phase relations for \(\text{ LaCoO }_{ 3-\delta } (0.00\delta 0.50)\) at 673 K. J. Mater. Chem. 8(9), 2081–2088 (1998)

    Article  Google Scholar 

  18. Aguadero, A., Alonso, J.A., Daza, L.: Oxygen excess in La2CoO4+ \(\delta \): a neutron diffraction study. Zeitschrift für Naturforschung B 63(6), 615–622 (2008)

    Article  Google Scholar 

  19. Lehmann, U., Mueller-Buschbaum, H.: Contribution on the chemistry of oxocobaltates (II): \(\text{ La }_{2}\text{ CoO }_{4}\), \(\text{ Sm }_{2}\text{ CoO }_{4}\). Zeitschrift fuer Anorganische und Allgemeine Chemie 470, 59–63 (1980)

    Article  Google Scholar 

  20. Le Dreau, L., Prestipino, C., Hernandez, O., Schefer, J.R., Vaughan, G., Paofai, S., Perez-Mato, J.M., Hosoya, S., Paulus, W.: Structural modulation and phase transitions in \(\text{ La }_{2}\text{ CoO }_{4}\).\(_{14}\) investigated by synchrotron X-ray and neutron single-crystal diffraction. Inorg. Chem. 51(18), 9789–9798 (2012)

    Article  Google Scholar 

  21. Fjellvåg, H., Hansteen, O.H., Hauback, B.C., Fischer, P.: Structural deformation and non-stoichiometry of \(\text{ La }_{4}\text{ Co }_{3}\text{ O }_{10+ \delta }\). J. Mater. Chem. 10(3), 749–754 (2000)

    Article  Google Scholar 

  22. Hansteen, O.H., Fjellvåg, H., Hauback, B.C.: Crystal structure, thermal and magnetic properties of \(\text{ La }_{4}\text{ Co }_{ 3}\text{ O }_{9}\). Phase relations for \(\text{ La }_{4}\text{ Co }_{3}\text{ O }_{10-\delta } (0.00\quad \delta 1.00)\) at 673 K. J. Mater. Chem. 8(9), 2089–2093 (1998)

    Article  Google Scholar 

  23. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12(8), 3060–3083 (1975)

    Article  Google Scholar 

  24. Kohn, W.: Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76(17), 3168–3171 (1996)

    Article  Google Scholar 

  25. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  26. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  27. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  28. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  29. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci. 30, 244–247 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martin, R.M.: Relation between elastic tensors of wurtzite and zinc-blende structure materials. Phys. Rev. B 6, 4546 (1972)

    Article  Google Scholar 

  31. Mouhat, F., Coudert, F.-X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014)

    Article  Google Scholar 

  32. Beckstein, O., Klepeis, J., Hart, G., Pankratov, O.: First-principles elastic constants and electronic structure of \(\alpha \)- Pt \(_{2}\)Si and PtSi. Phys. Rev. B 63, 134112 (2001)

    Article  Google Scholar 

  33. Wallace, D.C.: Thermodynamics of Crystals. Courier Corporation, New York (1998)

    Google Scholar 

  34. Pugh, S.F.: Relations between the elastic moduli and plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45, 823–843 (1954)

    Article  Google Scholar 

  35. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, pp. 60–180. Nauvoka Dumka, Kiev (1983)

    Google Scholar 

  36. Benmessabih, T., Amrani, B., El Haj Hassan, F., Hamdache, F., Zoaeter, M.: Computational study of AgCl and AgBr semiconductors. Phys. B Condens. Matter 392(1), 309–317 (2007)

    Article  Google Scholar 

  37. Fu, H., Li, D., Peng, F., Gao, T., Cheng, X.: Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44(2), 774–778 (2008)

    Article  Google Scholar 

  38. Ravindran, P., Lars, F., Korzhavyi, P.A., Johansson, B.: Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Amrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, R., Amrani, B., Driss Khodja, K. et al. Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide. J Comput Electron 17, 920–925 (2018). https://doi.org/10.1007/s10825-018-1197-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1197-6

Keywords

Navigation