Skip to main content
Log in

Theory of AC quantum transport with fully electrodynamic coupling

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

With the continued scaling of microelectronic devices along with the growing demand of high-speed wireless telecommunications technologies, there is increasing need for high-frequency device modeling techniques that accurately capture the quantum mechanical nature of charge transport in nanoscale devices along with the dynamic fields that are generated. In an effort to fill this gap, we develop a simulation methodology that self-consistently couples AC non-equilibrium Green functions with the full solution of Maxwell’s equations in the frequency domain. We apply this technique to simulate radiation from a quantum-confined, quarter-wave, monopole antenna where the length L is equal to one quarter of the wavelength, \(\lambda _0\). Classically, such an antenna would have a narrower, more directed radiation pattern compared to one with \(L \ll \lambda _0\), but we find that a quantum quarter-wave antenna has no directivity gain compared to the classical solution. We observe that the quantized wave function within the antenna significantly alters the charge and current density distribution along the length of the wire, which in turn modifies the far-field radiation pattern from the antenna. These results show that high-frequency radiation from quantum systems can be markedly different from classical expectations. Our method, therefore, will enable accurate modeling of the next generation of high-speed nanoscale electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klimeck, G., Ahmed, S.S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B., Trans, I.E.E.E.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D-Part II: applications. Electron Devices 54(9), 2090 (2007). https://doi.org/10.1109/TED.2007.904877

    Article  Google Scholar 

  2. Huang, L., Lai, Y.C., Ferry, D.K., Akis, R., Goodnick, S.M.: Transmission and scarring in graphene quantum dots, J. Phys. Condens. Matter 21(34), 344203 (2009). https://doi.org/10.1088/0953-8984/21/34/344203. http://stacks.iop.org/0953-8984/21/i=34/a=344203?key=crossref.06e69231502c0dec272d7605e1646d29

  3. Balzer, K., Bonitz, M., van Leeuwen, R., Stan, A., Dahlen, N.E.: Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Phys. Rev. B 79(24), 245306 (2009). https://doi.org/10.1103/PhysRevB.79.245306

    Article  Google Scholar 

  4. Lake, R., Datta, S.: Nonequilibrium Greens-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45(12), 6670 (1992). https://doi.org/10.1103/PhysRevB.45.6670

    Article  Google Scholar 

  5. Do, V.N., Dollfus, P., Lien, V.: Nguyen, Transport and noise in resonant tunneling diode using self-consistent Green’s function calculation. J. Appl. Phys. 100(9), (2006). https://doi.org/10.1063/1.2364035

  6. Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), (2006). https://doi.org/10.1063/1.2244522

  7. Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760 (2007). https://doi.org/10.1109/LED.2007.901680

    Article  Google Scholar 

  8. Koswatta, S.O., Hasan, S., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E., Trans, I.E.E.E.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. Electron Devices 54(9), 2339 (2007). https://doi.org/10.1109/TED.2007.902900

    Article  Google Scholar 

  9. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845 (1997). https://doi.org/10.1063/1.365394. http://scitation.aip.org/content/aip/journal/jap/81/12/10.1063/1.365394

  10. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253 (2000). https://doi.org/10.1006/spmi.2000.0920. http://linkinghub.elsevier.com/retrieve/pii/S0749603600909200

  11. Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of Nanoscale Devices. Proc. IEEE 96(9), 1511 (2008). https://doi.org/10.1109/JPROC.2008.927355. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4618725

  12. Pourfath, M.: The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation. Computational Microelectronics. Springer Vienna, Vienna (2014). https://doi.org/10.1007/978-3-7091-1800-9

    Google Scholar 

  13. Grondin, R.O., El-Ghazaly, S.M., Goodnick, S.: A review of global modeling of charge transport in semiconductors and full-wave electromagnetics. IEEE Trans. Microw. Theory Tech. 47(6 PART 2), 817 (1999). https://doi.org/10.1109/22.769315

    Article  Google Scholar 

  14. Witzig, A., Schuster, C., Member, S., Regli, P., Fichtner, W.: Global modeling of microwave applications by combining the FDTD method and a general semiconductor device and circuit simulator. IEEE Trans. Microw. Theor. Tech. 47(6), 919 (1999)

    Article  Google Scholar 

  15. Sirbu, M., Lepaul, S.B., Aniel, F., Trans, I.E.E.E.: Coupling 3-D maxwell’s and boltzmann’s equations for analyzing a terahertz photoconductive switch. Microw. Theory Tech. 53(9), 2991 (2005). https://doi.org/10.1109/TMTT.2005.854228

    Article  Google Scholar 

  16. Willis, K.J., Hagness, S.C., Knezevic, I.: Terahertz conductivity of doped silicon calculated using the ensemble Monte Carlo/finite-difference time-domain simulation technique. Appl. Phys. Lett. 96(6), (2010). https://doi.org/10.1063/1.3308491

  17. Willis, K.J., Hagness, S.C., Knezevic, I.: Multiphysics simulation of high-frequency carrier dynamics in conductive materials. J. Appl. Phys. 110(6) (2011). https://doi.org/10.1063/1.3627145

  18. Perfetto, E., Stefanucci, G., Cini, M.: Time-dependent transport in graphene nanoribbons. Phys. Rev. B 82(3), 035446 (2010). https://doi.org/10.1103/PhysRevB.82.035446

    Article  Google Scholar 

  19. Gaury, B., Waintal, X.: Dynamical control of interference using voltage pulses in the quantum regime. Nat. Commun. 5(May), 1 (2014). https://doi.org/10.1038/ncomms4844

  20. Tu, M.W.Y., Aharony, A., Zhang, W.M., Entin-Wohlman, O.: Real-time dynamics of spin-dependent transport through a double-quantum-dot Aharonov-Bohm interferometer with spin-orbit interaction. Phys. Rev. B - Condens. Matter Mater. Phys. 90(16), 1 (2014). https://doi.org/10.1103/PhysRevB.90.165422

    Article  Google Scholar 

  21. Tu, M.W.Y., Aharony, A., Entin-Wohlman, O., Schiller, A., Zhang, W.M.: Transient probing of the symmetry and the asymmetry of electron interference. Phys. Rev. B - Condens. Matter Mater. Phys. 93(12) (2016). https://doi.org/10.1103/PhysRevB.93.125437

  22. Stefanucci, G., Almbladh, C.O.: Time-dependent quantum transport: An exact formulation based on TDDFT. EPL (Europhys. Lett.) 67(1), 14 (2004). http://stacks.iop.org/0295-5075/67/i=1/a=014

  23. Ruggenthaler, M., Flick, J., Pellegrini, C., Appel, H., Tokatly, I.V., Rubio, A.: Quantum-electrodynamical density-functional theory: bridging quantum optics and electronic-structure theory. Phys. Rev. A 90, 012508 (2014). https://doi.org/10.1103/PhysRevA.90.012508

    Article  Google Scholar 

  24. Myöhänen, P., Stan, A., Stefanucci, G., van Leeuwen, R.: A many-body approach to quantum transport dynamics: Initial correlations and memory effects. EPL (Europhys. Lett. 84(6), 67001 (2008). https://doi.org/10.1209/0295-5075/84/67001

  25. Puig von Friesen, M., Verdozzi, C., Almbladh, C.O.: Kadanoff-Baym dynamics of Hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys. Rev. B 82(15), 155108 (2010). https://doi.org/10.1103/PhysRevB.82.155108

    Article  Google Scholar 

  26. Maciejko, J., Wang, J., Guo, H.: Time-dependent quantum transport far from equilibrium: an exact nonlinear response theory. Phys. Rev. B 74, 085324 (2006). https://doi.org/10.1103/PhysRevB.74.085324

    Article  Google Scholar 

  27. Gaury, B., Weston, J., Santin, M., Houzet, M., Groth, C., Waintal, X.: Dynamical control of interference using voltage pulses in the quantum regime. Phys. Rep. 534(1), 1 (2014). https://doi.org/10.1016/j.physrep.2013.09.001. http://linkinghub.elsevier.com/retrieve/pii/S0370157313003451

  28. Tuovinen, R., Perfetto, E., Stefanucci, G., van Leeuwen, R.: Time-dependent Landauer-Büttiker formula: application to transient dynamics in graphene nanoribbons. Phys. Rev. B 89, 085131 (2014). https://doi.org/10.1103/PhysRevB.89.085131

    Article  Google Scholar 

  29. Ridley, M., MacKinnon, A., Kantorovich, L.: Current through a multilead nanojunction in response to an arbitrary time-dependent bias. Phys. Rev. B 91, 125433 (2015). https://doi.org/10.1103/PhysRevB.91.125433

    Article  Google Scholar 

  30. Bttiker, M.: Capacitance, admittance, and rectification properties of small conductors. J. Phys.: Condens. Matter 5(50), 9361 (1993). https://doi.org/10.1088/0953-8984/5/50/017

  31. Anantram, M.P., Datta, S.: Effect of phase breaking on the ac response of mesoscopic systems. Phys. Rev. B 51(12), 7632 (1995). https://doi.org/10.1103/PhysRevB.51.7632

    Article  Google Scholar 

  32. Christen, T., Bttiker, M.: Gauge-invariant nonlinear electric transport in mesoscopic conductors. EPL (Europhys. Lett.) 35(7), 523 (1996). http://stacks.iop.org/0295-5075/35/i=7/a=523

  33. Wei, Y., Wang, J.: Current conserving nonequilibrium ac transport theory. Phys. Rev. B 79(19), 195315 (2009). https://doi.org/10.1103/PhysRevB.79.195315

    Article  Google Scholar 

  34. Kienle, D., Vaidyanathan, M., Léonard, F.: Self-consistent ac quantum transport using nonequilibrium Green functions. Phys. Rev. B 81(11), 115455 (2010). https://doi.org/10.1103/PhysRevB.81.115455

    Article  Google Scholar 

  35. Shevtsov, O., Waintal, X.: Numerical toolkit for electronic quantum transport at finite frequency. Phys. Rev. B 87(8), 085304 (2013). https://doi.org/10.1103/PhysRevB.87.085304

    Article  Google Scholar 

  36. Zhang, J.Q., Yin, Z.Y., Zheng, X., Yam, C.Y., Chen, G.H.: Gauge-invariant and current-continuous microscopic ac quantum transport theory. Eur. Phys. J. B 86(10) (2013). https://doi.org/10.1140/epjb/e2013-40325-7

  37. Larsson, J.: Electromagnetics from a quasistatic perspective. Am. J. Phys. 75(3), 230 (2007). https://doi.org/10.1119/1.2397095. http://scitation.aip.org/content/aapt/journal/ajp/75/3/10.1119/1.2397095

  38. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W. A. Benjamin, New York (1962)

    MATH  Google Scholar 

  39. Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  40. Sancho, M.P.L., Sancho, J.M.L., Sancho, J.M.L., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15(4), 851 (2000). https://doi.org/10.1088/0305-4608/15/4/009

    Article  Google Scholar 

  41. Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 14(5), 1205 (2000). https://doi.org/10.1088/0305-4608/14/5/016

    Article  Google Scholar 

  42. Moskalets, M., Büttiker, M.: Floquet scattering theory of quantum pumps. Phys. Rev. B 66, 205320 (2002). https://doi.org/10.1103/PhysRevB.66.205320

    Article  Google Scholar 

  43. Kohler, S., Lehmann, J., Hnggi, P.: Driven quantum transport on the nanoscale. Phys. Rep. 406(6), 379 (2005). https://doi.org/10.1016/j.physrep.2004.11.002. http://www.sciencedirect.com/science/article/pii/S0370157304005071

  44. Arrachea, L., Yeyati, A.L., Martin-Rodero, A.: Nonadiabatic features of electron pumping through a quantum dot in the Kondo regime. Phys. Rev. B 77, 165326 (2008). https://doi.org/10.1103/PhysRevB.77.165326

    Article  Google Scholar 

  45. Mahfouzi, F., Fabian, J., Nagaosa, N., Nikolić, B.K.: Charge pumping by magnetization dynamics in magnetic and semimagnetic tunnel junctions with interfacial Rashba or bulk extrinsic spin-orbit coupling. Phys. Rev. B 85, 054406 (2012). https://doi.org/10.1103/PhysRevB.85.054406

    Article  Google Scholar 

  46. Chen, S.H., Chen, C.L., Chang, C.R., Mahfouzi, F.: Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to precessing ferromagnets: A charge-conserving Floquet nonequilibrium Green function approach. Phys. Rev. B 87, 045402 (2013). https://doi.org/10.1103/PhysRevB.87.045402

    Article  Google Scholar 

  47. Taflove, A., Hagness, S.: Computational Electrodynmics. Artech House, Norwood (2005)

    Google Scholar 

  48. Chew, W.C.: Vector potential electromagnetics with generalized gauge for inhomogeneous media: formulation (invited paper). Prog. Electromagn. Res. 149(August), 69 (2014). https://doi.org/10.2528/PIER14060904. http://www.jpier.org/PIER/pier.php?paper=14060904

  49. Yee, Kane: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302 (1966). https://doi.org/10.1109/TAP.1966.1138693. http://ieeexplore.ieee.org/document/1138693/

  50. Luebbers, R., Hunsberger, F.R., Kunz, K.S., Standler, R.B., Schneider, M., Trans, I.E.E.E.: A frequency-dependent finite-difference time-domain formulation for dispersive materials. Electromagn. Compat. 32(3), 222 (1990). https://doi.org/10.1109/15.57116

    Article  Google Scholar 

  51. Meng, L., Yin, Z., Yam, C., Koo, S., Chen, Q., Wong, N., Chen, G.: Frequency-domain multiscale quantum mechanics/electromagnetics simulation method. J. Chem. Phys. 139(24), 244111 (2013). https://doi.org/10.1063/1.4853635. http://scitation.aip.org/content/aip/journal/jcp/139/24/10.1063/1.4853635

  52. Wagner, C., Schneider, J.: Divergent fields, charge, and capacitance in FDTD simulations. IEE Trans. Microw. Theory Tech. 46(12), 2131 (1998). https://doi.org/10.1109/22.739294. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=739294

  53. Wong, Y., Li, G.: Exact finite difference schemes for solving Helmholtz equation at any wavenumber. Int. J. Numer. Anal. Model. Ser. B 2(1), 91 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Rickard, Y., Georgieva, N., Wei-Ping, Huang: A perfectly matched layer for the 3-D wave equation in the time domain. IEEE Microw. Wirel. Components Lett. 12(5), 181 (2002). https://doi.org/10.1109/7260.1000196. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000196

  55. Shin, W., Fan, S.: Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231(8), 3406 (2012). https://doi.org/10.1016/j.jcp.2012.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0021999112000344

  56. Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51(8), 4940 (1995). https://doi.org/10.1103/PhysRevB.51.4940

    Article  Google Scholar 

  57. Bowler, D.R., Gillan, M.J.: An efficient and robust technique for achieving self consistency in electronic structure calculations. Chem. Phys. Lett. 325, 473 (2000). https://doi.org/10.1016/S0009-2614(00)00750-8

  58. Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. McGraw-Hill, New York (2001)

    Google Scholar 

  59. Petre, P., Sarkar, T.K., Trans, I.E.E.E.: Planar near-field to far-field transformation using an equivalent magnetic current approach. Antennas Propag. 40(11), 1348 (1992). https://doi.org/10.1109/8.202712

    Article  Google Scholar 

  60. Zhang, L., Wang, B., Wang, J.: First-principles investigation of alternating current density distribution in molecular devices. Phys. Rev. B 86(16), 165431 (2012). https://doi.org/10.1103/PhysRevB.86.165431

    Article  Google Scholar 

  61. Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81, 245402 (2010). https://doi.org/10.1103/PhysRevB.81.245402

    Article  Google Scholar 

  62. Philip, T.M., Gilbert, M.J.: High-performance nanoscale topological energy transduction. Sci. Rep. 7(1), 6736 (2017). https://doi.org/10.1038/s41598-017-06965-8

    Article  Google Scholar 

  63. Yu, Y., Zhan, H., Wei, Y., Wang, J.: Current-conserving and gauge-invariant quantum ac transport theory in the presence of phonon. Phys. Rev. B 90(7), 075407 (2014). https://doi.org/10.1103/PhysRevB.90.075407

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the NSF under CAREER Award ECCS-1351871. T.M.P. thanks M.J. Park and Y. Kim for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Philip.

Additional information

This work was supported by the National Science Foundation under CAREER ECCS-1351871.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, T.M., Gilbert, M.J. Theory of AC quantum transport with fully electrodynamic coupling. J Comput Electron 17, 934–948 (2018). https://doi.org/10.1007/s10825-018-1191-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1191-z

Keywords

Navigation