Skip to main content

Advertisement

Log in

Performance analysis of \(\hbox {TiO}_{2}\)-flavylium compound-based dye-sensitized solar cell (DSSC): a DFT–TDDFT approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The computational study of flavylium compound consists of anthocyanin pigments: callistephin, Chrysanthemin, oenin and mytrillin, and anthocyanidin pigments: peonidin and petunidin dyes are used to identify the potential photosensitizer for dye-sensitized solar cell (DSSC). Density functional theory is adopted to study methoxyl and hydroxyl groups in six pigments. The computed results of six dyes show good oscillator strength (f), light harvesting efficiency, electron injection \((\Delta G^\mathrm{{inject}})\) and electron regeneration \(({\Delta } G^\mathrm{{regen}})\). The short-circuit current density \(({J}_{\mathrm{sc}})\), total reorganization energy \(({\uplambda }_{\mathrm{total}})\) and open-circuit voltage \(({V}_{\mathrm{oc}})\) were also discussed. Intermolecular charge transfer of six dyes was examined using frontier molecular orbital. However, Peonidin/Titanium dioxide system has shown a significant response in density of states. Hence, this study confirms peonidin dye can be used as a photosensitizer for DSSC applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan, B., Gratzel, M.: A low-cost, high efficiency solar cell based on dye-sensitized colloidal \(\text{ TiO }_{2}\) films. Nature 353, 737–739 (1991)

    Article  Google Scholar 

  2. Yella, A., Lee, H.W., Tsao, H.N., Yi, C.Y., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S.M., Gratzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)

    Article  Google Scholar 

  3. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  Google Scholar 

  4. Ito, S., Murakami, T., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M., Gratzel, M.: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516(14), 4613–4619 (2008)

    Article  Google Scholar 

  5. Hwang, S., Lee, J., Park, C., Lee, H., Kim, C., Lee, M.-H., Lee, W., Park, J., Kim, K., Park, N., Kim, C.: A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 14(46), 4887–4889 (2007)

    Article  Google Scholar 

  6. Mishra, A., Fischer, M., Bäuerle, P.: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie int. ed. 48, 2474–2499 (2009)

    Article  Google Scholar 

  7. He, J., Wu, W., Hua, J., Jiang, Y., Qu, S., Li, J., Long, Y., Tian, H.: Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. J. Mater. Chem. 21, 6054–6062 (2011)

    Article  Google Scholar 

  8. Senthil, T.S., Muthukumarasamy, N., Velauthapillai, D., Agilan, S., Thambidurai, M., Balasundaraprabhu, R.: Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline \(\text{ TiO }_{2}\) solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew. Energy 36, 2484–2488 (2011)

    Article  Google Scholar 

  9. Yi-Chun, C., Wei-Yun, C., Shih-Yuan, L.: Titania aerogels as a superior mesoporous structure for photoanodes of dye-sensitized solar cells. Int. J. Electrochem. Sci. 7, 6910–6919 (2012)

    Google Scholar 

  10. Freeman, G.R.: Density functional theory in the design of organometallics for energy conversation. Organomet. Relat. Mol. Energy Convers. 13, 29–59 (2015)

    Google Scholar 

  11. Mohr, T., Arulmoji, V., Ravindran, R.S., Muller, M., Ranjitha, S., Rajarajan, G., Anbarsan, P.M.: DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells. Spectrochim Acta A: Mol Biomol Spectrosc. 135, 1066–1073 (2015)

    Article  Google Scholar 

  12. Kooh, M.R.R., Yoong, V.N., Ekanayake, P.: Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies of selected ancient colourants as sensitizers in dye-sensitized solar cells. J. Natl. Sci. Found. Sri Lanka 42, 169–175 (2014)

    Article  Google Scholar 

  13. Amat, A., Clementi, C., De Angelis, F., Sgamellotti, A., Fantacci, S.: Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation. J. Phys. Chem. A. 113, 15118–15126 (2009)

    Article  Google Scholar 

  14. Fitri, A., Benelloun, A.T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouachrine, M.: Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Mol. Biomol. Spectrosc. S 1386(14), 737–739 (2014)

    Google Scholar 

  15. Chaiamornnugool, P., Tontapha, S., Phatchana, R., Ratchapolthavisin, N., Kanokmedhakul, S., Sang-aroon, W., Amornkitbamrung, V.: Performance and stability of low-cost dye-sensitized solar cell based crude and pre-concentrated anthocyanins: combined experimental and DFT/TDDFT study. J. Mol. Struct. 1127, 145–155 (2017)

    Article  Google Scholar 

  16. Hernandez, F., Melgarejo, P., Tomas-Barberan, F.A., Artes, F.: Evolution of juice anthocyanins during ripening of new selected pomegranate (Punica granatum) clones. Eur. Food Res. Technol. 210, 39–42 (1999)

    Article  Google Scholar 

  17. Iacobucci, G.A., Sweeny, J.G.: The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron 39(19), 3005–3038 (1983)

    Article  Google Scholar 

  18. Zama, I., Martelli, C., Gorni, G.: Preparation of \(\text{ TiO }_{2}\) paste starting from organic colloidal suspension for semi-transparent DSSC photo-anode application. Mater. Sci. Semicond. Process. 61, 137–144 (2017)

    Article  Google Scholar 

  19. Calogero, G., Bartolotta, A., Di Marco, G., Di Carlob, A., Bonaccorso, F.: Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 44(10), 3244–3294 (2015)

    Article  Google Scholar 

  20. Calogero, G., Yum, J.H., Sinopoli, A., Di Marco, G., Gratzel, M., Nazeeruddin, M.K.: Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy 86, 1563–1575 (2012)

    Article  Google Scholar 

  21. Megala, M., Rajkumar, B.J.M.: Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs). J. Comput. Electron. 15(2), 557–568 (2016)

    Article  Google Scholar 

  22. Janeiro, P., Brett, A.M.O.: Redox behavior of anthocyanins present in Vitis vinifera L. Electroanalysis 19(17), 1779–1786 (2007)

    Article  Google Scholar 

  23. Soto-Rojo, R., Baldenebro-Lopez, J., Flores-Holguin, N.: Comparison of several protocols for the computational prediction of the maximum absorption wavelength of chrysanthemin. J. Mol. Model. 20, 2378–2382 (2014)

    Article  Google Scholar 

  24. Fan, W., Deng, W.: Incorporation of thiadiazole derivatives as \({\uppi }\)-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1, 152–170 (2013)

    Google Scholar 

  25. El, A.A., Hallaoui, A., Saddik, R., Benchat, N., Benali, B., Zarrouk, A.: Gaussian electronic properties studies of organic materials based on pyridazine for efficient photovoltaic devices. Der Pharmacia Lett. 7, 295–304 (2015)

    Google Scholar 

  26. Opera, C.I., Panait, P., Cimpoesu, F., Ferbinteanu, M., Girtu, M.A.: Density functional theory (DFT) study of coumarin-based dyes adsorbed on \(\text{ TiO }_{2}\) nanoclusters-applications to dye-sensitized solar cells. Materials 6, 2372–2392 (2013)

    Article  Google Scholar 

  27. Obotowo, I.N., Obot, I.B., Ekpe, U.J.: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives. J. Mol. Struct. 16, 30536–30541 (2016)

    Google Scholar 

  28. Feng, J., Jiao, Y., Ma, W., Nazeeruddin, M.K., Gratzel, M., Meng, S.: First principles design of dye molecules with ullazine donor for dye-sensitized solar cells. J. Phys. Chem. 117, 3772–3778 (2012)

    Google Scholar 

  29. Ma, W., Jiao, Y., Meng, S.: Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. Phys. Chem. Chem. Phys. 15, 17187–17194 (2013)

    Article  Google Scholar 

  30. Zhang, M.-J., Guo, Y.-R., Fang, G.-Z., Pan, Q.-J.: DFT/TD-DFT studies on structural and spectroscopic properties of metalloporphyrin complexes: a design of ruthenium porphyrin photosensitizer. Comput. Theor. Chem. 2013, 94–100 (1019)

    Google Scholar 

  31. Muthaiyan, L., Sriram, S., Jeyaprakash, B.G., Balamurugan, D.: Combined experimental and DFT/TDDFT study of berry dye chelated \(\text{ TiO }_{2}\) for dssc applications. Rasayan J. Chem. 10(4), 1417–1423 (2017)

    Google Scholar 

  32. Narayan, M.R.: Review: dye-sensitized solar cells based on natural photosensitizers. Renew. Sust. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  33. Zhang, Z.L., Zou, L.Y., Ren, A.M., Liu, Y.F., Feng, J.K., Sun, C.C.: Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigm. 96, 349–363 (2013)

    Article  Google Scholar 

  34. Zhang, J., Li, H.B., Sun, S.L., Geng, Y., Wu, Y., Su, Z.M.: Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. J. Mater. Chem. 22, 568–576 (2012)

    Article  Google Scholar 

  35. Zhang, J., Kan, Y.H., Li, H.B., Geng, Y., Wu, Y., Su, Z.M.: How to design proper \({\uppi }\)-spacer order of the D-\({\uppi }\)-A dyes for DSSCs? A density functional response. Dyes Pigm. 95, 313–321 (2012). https://doi.org/10.1016/j.dyepig.2012.05.020

    Article  Google Scholar 

  36. Fan, W., Deng, W.: Incorporation of thiadiazole derivatives as \({\uppi }\)-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1, 152–170 (2013). https://doi.org/10.4208/cicc.2013.v1.n2.6

    Google Scholar 

  37. Ding, W.L., Wang, D.M., Geng, Z.Y., Zhao, X.L., Xu, W.B.: Density functional theory characterization and verification of high-performance indoline dyes with D-A-\({\uppi }\)—a architecture for dye-sensitized solar cells. Dyes Pigm. 98, 125–135 (2013). https://doi.org/10.1016/j.dyepig.2013.02.0089

    Article  Google Scholar 

  38. Sang-aroon, W., Saekow, S., Amornkitbamrung, V.: Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A 236, 35–40 (2012)

    Article  Google Scholar 

  39. El-Shishtawy, R.M., Asiri, A.M., Aziz, S.G., Elroby, S.A.K.: Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J. Mol. Model. 20, 2241–2245 (2014). https://doi.org/10.1007/s00894-014-2241-5

    Article  Google Scholar 

  40. Zhang, X.H., Wang, L.Y., Zhai, G.H., Wen, Z.Y., Zhang, Z.X.: The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes. J. Mol. Struct. 906, 50–55 (2009)

    Article  Google Scholar 

  41. Chien, C.Y., Hsu, B.D.: Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Sol. Energy 98, 203–211 (2013). https://doi.org/10.1016/j.solener.2013.09.035

    Article  Google Scholar 

  42. Tai, C.-K., Chen, Y.-J., Chang, H.-W., Yeh, P.-L., Wang, B.-C.: DFT and TD-DFT investigations of metal-free dye sensitizers for solar cells: effects of electron donors and p-conjugated linker. Comput. Theor. Chem. 971, 42–50 (2011)

    Article  Google Scholar 

  43. Ham, H.W., Kim, Y.S.: Theoretical study of indoline dyes for dye-sensitized solar cells. Thin Solid Films 518, 6558–6563 (2010)

    Article  Google Scholar 

  44. Aroon, W.S., Laopha, S., Chaiamornnugool, P., Tontapha, S., Saekow, S., Amornkitbamrung, V.: DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. J. Mol. Model. 19, 1407–1415 (2013)

    Article  Google Scholar 

  45. Duncan, W.R., Prezhdo, O.V.: Theoretical studies of photoinduced electron transfer in dye-sensitized \(\text{ TiO }_{2}\). Annu. Rev. Phys. Chem. 58, 143–84 (2007)

    Article  Google Scholar 

  46. Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Yuan, L.H., Chen, Y.H., Wei, Z.Q., Wu, Y.Z., Liu, Z.J., Chen, H.S.: Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 19, 1553–1563 (2013)

    Article  Google Scholar 

  47. Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Ma, Y., Yuan, L.H., Zhang, M.L., Wu, Y.Z., Liu, Z.J., Chen, H.S.: The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. Int. J. Mol. Sci. 14, 5461–5481 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the management of SASTRA Deemed University for providing the cluster computational facility to perform the computational work. The authors also would like to thank the Department of Science and Technology, India, for their financial support through the Fund for Improvement of S&T Infrastructure (FIST) programme (SR/FST/ETI-349/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanakumar, M., Sriram, S. & Balamurugan, D. Performance analysis of \(\hbox {TiO}_{2}\)-flavylium compound-based dye-sensitized solar cell (DSSC): a DFT–TDDFT approach. J Comput Electron 17, 1143–1152 (2018). https://doi.org/10.1007/s10825-018-1189-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1189-6

Keywords

Navigation