Skip to main content
Log in

Intersubband optical properties of three electrons confined in multishell quantum dots: comparison of two semiconducting compounds

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigated the effect of the number of wells and quantum dot radius on the dipole matrix elements and optical properties of three electrons confined in concentric multishell quantum dots, comparing two different semiconducting compound nanostructures: \(\hbox {GaAs/Ga}_{{x}}\hbox {Al}_{{(1-x)}}\hbox {As}\) and InGaAs/InAlAs. We used a high-accuracy interpolation-based 14-point finite difference method to solve the corresponding Schrodinger equation. The results showed that, although InGaAs/InAlAs multishell quantum dots have lower absorption peak heights than the \(\hbox {GaAs/Ga}_{{x}}\hbox {Al}_{{(1-x)}}\hbox {As}\) ones, the effects of the quantum dot radius and number of wells on the optical properties are more intense in the studied InGaAs/InAlAs structures. Therefore, since a wider absorption peak height range can be spanned when using the InGaAs/InAlAs system, these structures are more tunable, which could facilitate selection of desired systems by experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283–1342 (2002)

    Article  Google Scholar 

  2. Kouwenhoven, L.P., Austing, D.G., Tarucha, S.: Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001)

    Article  Google Scholar 

  3. Bratschitsch, R., Leitenstorfer, A.: Quantum dots: artificial atoms for quantum optic. Nat. Mater. 5, 855–856 (2006)

    Article  Google Scholar 

  4. Schedelbeck, G.: Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792 (1997)

    Article  Google Scholar 

  5. Hada, Y., Eto, M.: Electronic states in silicon quantum dots: multivalley artificial atoms. Phys. Rev. B 68, 155322–155322-7 (2003)

    Article  Google Scholar 

  6. Fujisawa, T., Oosterkamp, T.H., van der Wiel, W.G., Broer, B.W., Aguado, R., Tarucha, S., Kouwenhoven, L.P.: Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998)

    Article  Google Scholar 

  7. Gammon, D.: Electrons in artificial atoms. Nature 405, 899–900 (2000)

    Article  Google Scholar 

  8. Prudente, F.V., Costa, L.S., Vianna, J.D.M.: A study of two-electron quantum dot spectrum using discrete variable representation method. J. Chem. Phys. 123, 224701–224701-11 (2005)

    Article  Google Scholar 

  9. Li, Y., Yannouleas, C., Landman, U.: Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement. Phys. Rev. B 76, 245310–245310-12 (2007)

    Article  Google Scholar 

  10. Tavernier, M.B., Anisimovas, E., Peeters, F.M., Szafran, B., Adamowski, J., Bednarek, S.: Four-electron quantum dot in a magnetic field. Phys. Rev. B 68, 205305–205305-9 (2003)

    Article  Google Scholar 

  11. Mikhailov, S.A.: Few-electron quantum dots and disks in zero magnetic field: possible indications on a liquid–solid transition. Physica E 12, 884–887 (2002)

    Article  Google Scholar 

  12. Szafran, B., Bednarek, S., Adamowski, J.: Magnetic-field-induced transformations of Wigner molecule symmetry in quantum dots. Phys. Rev. B 67, 045311–045311-4 (2003)

    Article  Google Scholar 

  13. Garcia-Castelan, R.M.G., Choe, W.S., Lee, Y.C.: Correlation energies for two interacting electrons in a harmonic quantum dot. Phys. Rev. B 57, 9792–9806 (1997)

    Article  Google Scholar 

  14. Simonovic, N.S., Nazmitdinov, R.G.: Dynamical screening of the Coulomb interaction for two confined electrons in a magnetic field. Phys. Rev. A 78, 032115–032115-10 (2008)

    Article  Google Scholar 

  15. Huang, J., Libin: Dipole-allowed optical absorption in a parabolic quantum dot with two electrons. Phys. Lett. A 372, 4323–4326 (2008)

  16. Xie, W.: Linear and nonlinear optical absorptions of a two-electron quantum dot. Phys. B 405, 2102–2106 (2010)

    Article  Google Scholar 

  17. Lu, L., Xie, W.: Electric field effects on the intersubband optical absorptions and refractive index in double-electron quantum dots. Phys. Scr. 84, 025703–025707-7 (2011)

    Article  MATH  Google Scholar 

  18. Fang, A., Chi, X., Sheng, P.: Ground and excited states of three-electron quantum dots. Solid State Commun. 142, 551–555 (2007)

    Article  Google Scholar 

  19. Hassanabadi, H., Rahimov, H., Zarrinkamar, S.: Rashba coupling in three-electron-quantum dot under cylindrical symmetry: an exact solution. Ann. Phys. 326, 2957–2962 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Çakr, B., Yakar, Y., Özmen, A., Özgür Sezer, M., Sahin, M.: Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot. Superlatt. Microstruct. 47, 556–566 (2010)

    Article  Google Scholar 

  21. Zhang, C.-J., Guo, K.-X.: Polaron effects on the third-order nonlinear optical susceptibility in asymmetrical semi-parabolic quantum wells. Phys. B 383, 183–187 (2006)

    Article  Google Scholar 

  22. Wang, G., Guo, K.: Excitonic effects on the third-harmonic generation in parabolic quantum dots. J. Phys.: Condens. Matter 13, 8197–8206 (2001)

    Google Scholar 

  23. Adamowski, J., Sobkowicz, M., Szafran, B., Bednarek, S.: Electron pair in a Gaussian confining potential. Phys. Rev. B 62, 4234–4237 (2000)

    Article  Google Scholar 

  24. Palacios, J.J., Hawrylak, P.: Correlated few-electron states in vertical double-quantum-dot systems. Phys. Rev. B 51, 1769–1777 (1995)

    Article  Google Scholar 

  25. Daia, Z.H., Zhang, L.D., Sun, J.Z., Li, Z.H., Huangb, S.Y.: Few-electron filling effect in laterally coupled spherical InAs/GaAs quantum-dot system. Appl. Phys. Lett. 80, 2577–2579 (2002)

    Article  Google Scholar 

  26. Pujari, B., Joshi, K., Kanhere, D.G., Blundell, S.A.: Electronic structure of many-electron square-well quantum dots with and without an attractive impurity: spin-density-functional theory. Phys. Rev. B 76, 085340–085340-10 (2007)

    Article  Google Scholar 

  27. Szafran, B., Adamowski, J., Bednarek, S.: Few-electron systems in quantum cylinders. Phys. Rev. B 61, 1971–1977 (2000)

    Article  Google Scholar 

  28. Rontani, M., Cavazzoni, C., Bellucci, D., Goldoni, G.: Full configuration interaction approach to the few-electron problem in artificial atoms. J. Chem. Phys. 124, 124102–124102-14 (2006)

    Article  Google Scholar 

  29. Maksym, P.A., Chakraborty, T.: Quantum dots in a magnetic field: role of electron–electron interactions. Phys. Rev. Lett. 65, 108–111 (1990)

    Article  Google Scholar 

  30. Mikhailov, S.A.: Quantum-dot lithium in zero magnetic field: electronic properties, thermodynamics, and Fermi liquid–Wigner solid crossover in the ground state. Phys. Rev. B 65, 115312–115312-12 (2002)

    Article  Google Scholar 

  31. Mikhailov, S.A., Savostianova, N.A.: Depolarization of electron spins by a magnetic field quantum-dot lithium in the strong-interaction regime. Phys. Rev. B 66, 033307–033307-4 (2002)

    Article  Google Scholar 

  32. Wensauer, A., Steffens, O., Suhrke, M., Rossler, U.: Laterally coupled few-electron quantum dots. Phys. Rev. B 62, 2605–2613 (2000)

    Article  Google Scholar 

  33. Sullivana, D., Citrinb, D.S.: Time-domain simulation of two electrons in a quantum dot. J. Appl. Phys. 89, 3841–3846 (2001)

    Article  Google Scholar 

  34. Lozovik, Y.E., Volkov, SYu., Willander, M.: Crystallization and quantum melting of few electron system in a spherical quantum dot: quantum Monte Carlo simulation. Solid State Commun. 125, 127–131 (2003)

    Article  Google Scholar 

  35. Balzer, K., Bonitz, M., van Leeuwen, R., Stan, A., Dahlen, N.E.: Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Phys. Rev. B 79, 245306–245306-13 (2009)

    Article  Google Scholar 

  36. Hassanabadi, H., Rahimov, H.: An alternative method for spectrum of a three-electron-quantum dot. Phys. B 406, 3070–3073 (2011)

    Article  Google Scholar 

  37. Hassanabadi, H., Hamzavi, M., Zarrinkamar, S., Rajabi, A.A.: Quadratic and coulomb terms for the spectrum of a three-electron quantum dot. Few-Body Syst. 48, 53–58 (2010)

    Article  MATH  Google Scholar 

  38. http://www.caam.rice.edu/software/ARPACK/download.html

  39. Yannouleas, C., Landman, U.: Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods. Rep. Prog. Phys. 70, 2067–2148 (2007)

    Article  Google Scholar 

  40. Yannouleas, C., Landman, U.: Collective and independent-particle motion in two-electron artificial atoms. Phys. Rev. Lett. 85, 1726–1729 (2000)

    Article  Google Scholar 

  41. Taut, M.: Distortion of Wigner molecules: a pair function approach. J. Phys.: Condens. Matter 21, 075302–075302-10 (2009)

    Google Scholar 

  42. Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. QE–23, 2196–2204 (1987)

    Google Scholar 

  43. Adachia, S.: GaAs, AlAs, and AlxGa1-xAs: material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985)

    Article  Google Scholar 

  44. Solaimani, M., Izadifard, M., Arabshahi, H., Sarkardei, M.R.: Study of optical non-linear properties of a constant total effective length multiple quantum wells system. J. Lumin. 134, 699–705 (2013)

    Article  MATH  Google Scholar 

  45. Susa, N.: Electric-field-induced refractive index changes in InGaAs–InAlAs asymmetric coupled quantum wells. IEEE J. Quant. Electron. 31, 92–100 (1995)

    Article  Google Scholar 

  46. Li, S.-S., Xia, J.-B.: Linear Rashba model of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells. Nanoscale Res. Lett. 4, 178–180 (2009)

    Article  Google Scholar 

  47. Huang, Y., Wang, J., Lien, C.: Electric field dependence of optical absorption properties in coupled quantum wells and their application to \(1.3\,\upmu \text{ m }\) optical modulator. J. Appl. Phys. 77, 11–16 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding for this work from the Iran National Science Foundation (INSF) through research project no. 94010730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solaimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaimani, M. Intersubband optical properties of three electrons confined in multishell quantum dots: comparison of two semiconducting compounds. J Comput Electron 17, 1135–1142 (2018). https://doi.org/10.1007/s10825-018-1187-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1187-8

Keywords

Navigation