Journal of Computational Electronics

, Volume 17, Issue 3, pp 949–958 | Cite as

Scattering by a magnetized plasma-coated topological insulator cylinder

  • Majeed A. S. Alkanhal
  • A. Ghaffar
  • M. M. Hussan
  • Y. Khan
  • I. Ahmad
  • Q. A. Naqvi


In the present paper, the scattering characteristics of a magnetized plasma-coated topological insulator cylinder are formulated and analysed graphically. Field equations at each interface are expanded in terms of cylindrical wave vector functions by imposing extended classical wave-scattering theory. By applying the boundary conditions, scattering matrices are obtained in terms of scattered and transmitted coefficients. The obtained results are also compared with published results to display the accuracy of the present formulation under some special conditions. Changes in the bistatic echo widths of the topological insulator cylinder are also recorded by varying the anisotropic plasma parameters (i.e., the applied magnetic field, plasma density and effective collisional frequency).


Scattering Topological insulator Cylinder Plasma 



The authors would like to extend their sincere appreciation to The Deanship of Scientific Research (DSR) at King Saud University, Riyadh, Saudi Arabia for their financial support through the Research Group Project No. RG-1438-12.

Author Contributions

MASA, AG and MMH derived analytical expressions and numerical analysis. They wrote the main manuscript text. YK developed methodology in the given study. MASA, and YK also secured the research grant for this project and will be paying the publication fee from the grant approved on their name. This project was accomplished under the supervision of MASA. MYN and QAN conducted computational calculations of Figs. 2 and 3. All authors reviewed the manuscript before submitting it to ‘Journal of Computational Electronics’.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lin, H., et al.: Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546 (2010)CrossRefGoogle Scholar
  2. 2.
    Kane, C.L., Mele, E.J.: Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, Y.P.: In: SPIE Defense, Security, and Sensing. 83730B-83730B-83735. International Society for Optics and PhotonicsGoogle Scholar
  4. 4.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Zhang, S.-C.: In SPIE Defense, Security, and Sensing. 837309-837309-837311. International Society for Optics and PhotonicsGoogle Scholar
  6. 6.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)CrossRefGoogle Scholar
  7. 7.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)CrossRefGoogle Scholar
  8. 8.
    Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B78, 195424 (2008)CrossRefGoogle Scholar
  9. 9.
    Qi, X.-L., Li, R., Zang, J., Zhang, S.-C.: Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ahmed, S., Naqvi, Q.: Electromagnetic scattering from a perfect electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability. Opt. Commun. 281, 5664–5670 (2008)CrossRefGoogle Scholar
  11. 11.
    Ahmed, S., Naqvi, Q.A.: Scattering of electromagnetic waves by a coated nihility cylinder. J. Infrared Millim. Terahertz Waves 30, 1044 (2009)CrossRefGoogle Scholar
  12. 12.
    Shen, C.L.Z.: Electromagnetic scattering by a conducting cylinder coated with metamaterials. Prog. Electromag. Res. 42, 91–105 (2003)CrossRefGoogle Scholar
  13. 13.
    Tse, W.-K., MacDonald, A.: In: APS Meeting Abstracts. 35001Google Scholar
  14. 14.
    Tse, W.-K., MacDonald, A.: Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Phys. Rev. B84, 205327 (2011)CrossRefGoogle Scholar
  15. 15.
    Maciejko, J., Qi, X.-L., Drew, H.D., Zhang, S.-C.: Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010)CrossRefGoogle Scholar
  16. 16.
    Chang, M.-C., Yang, M.-F.: Optical signature of topological insulators. Phys. Rev. B80, 113304 (2009)CrossRefGoogle Scholar
  17. 17.
    Grushin, A.G., Rodriguez-Lopez, P., Cortijo, A.: Effect of finite temperature and uniaxial anisotropy on the Casimir effect with three-dimensional topological insulators. Phys. Rev. B84, 045119 (2011)CrossRefGoogle Scholar
  18. 18.
    Grushin, A.G., Cortijo, A.: Tunable Casimir repulsion with three-dimensional topological insulators. Phys. Rev. Lett. 106, 020403 (2011)CrossRefGoogle Scholar
  19. 19.
    Ashraf, F., Ahmed, S., Syed, A., Naqvi, Q.: Electromagnetic scattering from a topological insulator cylinder placed in chiral medium. Int. J. Appl. Electromag. Mech. 47, 237–244 (2015)Google Scholar
  20. 20.
    Abbas, G., Ahmed, S., Syed, A.A., Naqvi, Q.A.: Scattering from a topological insulator circular cylinder coated with DNG/MNG/ENG metamaterials. Opt. Int. J. Light Electron Opt. 127, 2635–2641 (2016)CrossRefGoogle Scholar
  21. 21.
    Ghaffar, A., Yaqoob, M., Alkanhal, M.A., Sharif, M., Naqvi, Q.: Electromagnetic scattering from anisotropic plasma-coated perfect electromagnetic conductor cylinders. AEU Int. J. Electron. Commun. 68, 767–772 (2014)CrossRefGoogle Scholar
  22. 22.
    Yaqoob, M., Shakir, I., Ghaffar, A., Khan, Y., Naqvi, Q.: Transmission of electromagnetic wave from anisotropic plasma coated nihility circular cylinder. Int. J. Appl. Electromag. Mech. 50, 51–61 (2016)CrossRefGoogle Scholar
  23. 23.
    Yaqoob, M., et al.: Electromagnetic scattering from perfect electromagnetic conductor cylinders placed in magnetized plasma medium. Optoelectron. Adv. Mater. Rapid Commun. 8, 1150–1156 (2014)Google Scholar
  24. 24.
    Vass, S.: Stealth technology deployed on the battle field. Inf. Robot. 2, 257–269 (2003)Google Scholar
  25. 25.
    Richards, M.A.: Fundamentals of Radar Signal Processing. Tata McGraw-Hill Education, New York (2005)Google Scholar
  26. 26.
    Singh, H., Antony, S., Jha, R.M.: In: Plasma-Based Radar Cross Section Reduction, pp. 1–46. Springer, Berlin (2016)Google Scholar
  27. 27.
    Miyamoto, K.: Plasma Physics for Nuclear Fusion (Translation). MIT Press, Cambridge (1980)Google Scholar
  28. 28.
    Geng, Y., Wu, X., Li, L.-W.: Analysis of electromagnetic scattering by a plasma anisotropic sphere. Radio Sci. 38, 12-11–12-12 (2003)CrossRefGoogle Scholar
  29. 29.
    Chen, H., Cheng, D.: Scattering of electromagnetic waves by an anisotropic plasma-coated conducting cylinder. IEEE Trans. Antennas Propag. 12, 348–353 (1964)CrossRefGoogle Scholar
  30. 30.
    Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, London (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Majeed A. S. Alkanhal
    • 1
  • A. Ghaffar
    • 2
  • M. M. Hussan
    • 2
  • Y. Khan
    • 1
  • I. Ahmad
    • 1
  • Q. A. Naqvi
    • 3
  1. 1.Department of Electrical EngineeringKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of ElectronicsQuaid-i-AzamIslamabadPakistan

Personalised recommendations