Skip to main content
Log in

Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Using first-principles density functional theory, we investigated the geometrical structure and magnetic, electronic, and transport properties of blue phosphorene doped with a multitude of substitutional impurities, including both metallic and semiconducting elements. Substitutional dopants modified the properties of blue phosphorene. B, Al, Ga, Sb, Bi, and Sc substitutional dopants led to an indirect- to direct-gap transition. Blue phosphorene with C, Si, Ge, Sn, O, S, Se, and Fe substitutional dopant atoms showed dilute magnetic semiconducting properties. Furthermore, the effective mass as well as zero-bias transmission spectrum of this material support the fact that the transport properties of blue phosphorene are modified by the above-mentioned impurity atoms. The effective mass of holes for the Bi- and Sb-doped systems was about \(0.138m_{0}\), implying that these systems have high hole mobility. Meanwhile, the Sb-doped system exhibited the smallest effective mass for electrons of \(0.244m_{0}\). The results of this study illustrate that doped blue phosphorene exhibits different electronic, magnetic, transport, and optical properties from pristine blue phosphorene, which may enable many useful applications in nanoelectronics, gas sensing, optoelectronics, and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  3. Jin, C., Lin, F., Suenaga, K., Iijima, S.: Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102(19), 195505 (2009)

    Article  Google Scholar 

  4. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS\(_{2}\) transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  Google Scholar 

  5. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  Google Scholar 

  6. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

    Article  Google Scholar 

  7. Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12(3), 1224–1228 (2012)

    Article  Google Scholar 

  8. Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and Exfoliation of germanane: a germanium graphane analogue. ACS Nano 7(5), 4414–4421 (2013)

    Article  Google Scholar 

  9. Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)

    Article  Google Scholar 

  10. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015)

    Article  Google Scholar 

  11. Lu, G., Wu, T., Yuan, Q., Wang, H., Wang, H., Ding, F., Xie, X., Jiang, M.: Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015)

    Article  Google Scholar 

  12. Liu, H., Neal, A.T., Zhu, Z., Xu, X., Tomanek, D., Ye, P.D., Luo, Z.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  Google Scholar 

  13. Du, Y., Liu, H., Deng, Y., Ye, P.D.: Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014)

    Article  Google Scholar 

  14. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  Google Scholar 

  15. Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014)

    Article  Google Scholar 

  16. Na, J., Lee, Y.T., Lim, J.A., Hwang, D.K., Kim, G.-T., Choi, W.K., Song, Y.-W.: Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8(11), 11753–11762 (2014)

    Article  Google Scholar 

  17. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    Google Scholar 

  18. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    Google Scholar 

  19. Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)

    Article  Google Scholar 

  20. Kim, J., Baik, S.S., Ryu, S.H., Sohn, Y., Park, S., Park, B.-G., Denlinger, J., Yi, Y., Choi, H.J., Kim, K.S.: Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349(6249), 723–726 (2015)

    Article  Google Scholar 

  21. Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014)

    Article  Google Scholar 

  22. Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B., Schwingenschlögl, U.: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS\(_{2}\) systems. Phys. Rev. B 87(10), 100401 (2013)

    Article  Google Scholar 

  23. Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS\(_{2}\): an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87(19), 195201 (2013)

    Article  Google Scholar 

  24. Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W.: Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016)

    Article  Google Scholar 

  25. Sun, M., Wang, S., Du, Y., Yu, J., Tang, W.: Transition metal doped arsenene: a first-principles study. Appl. Surf. Sci. 389, 594–600 (2016)

    Article  Google Scholar 

  26. Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., Tang, W.: Magnetism in transition-metal-doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016)

    Article  Google Scholar 

  27. Sun, M., Ren, Q., Zhao, Y., Chou, J.P., Yu, J., Tang, W.: Electronic and magnetic properties of 4\(d\) series transition metal substituted graphene: a first-principles study. Carbon 120, 265–273 (2017)

    Article  Google Scholar 

  28. Sun, M., Tang, W., Ren, Q., Zhao, Y., Wang, S., Yu, J., Du, Y., Hao, Y.: Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: a firstprinciples study. Phys. E Low Dimens. Syst. Nanostruct. 80, 142–148 (2016)

    Article  Google Scholar 

  29. Robertson, A.W., Montanari, B., He, K., Kim, J., Allen, C.S., Wu, Y.A., Olivier, J., Neethling, J., Harrison, N., Kirkland, A.I., Warner, J.H.: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13(4), 1468–1475 (2013)

    Article  Google Scholar 

  30. Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W., Zhang, X.X.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12(1), 141–144 (2012)

    Article  Google Scholar 

  31. Rodríguez-Manzo, J.A., Cretu, O., Banhart, F.: Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 4(6), 3422–3428 (2010)

    Article  Google Scholar 

  32. Guan, J., Zhu, Z., Tománek, D.: Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113(4), 46804 (2014)

    Article  Google Scholar 

  33. Xie, J., Si, M.S., Yang, D.Z., Zhang, Z.Y., Xue, D.S.: A theoretical study of blue phosphorene nanoribbons based on firstprinciples calculations. J. Appl. Phys. 116(7), 73704 (2014)

    Article  Google Scholar 

  34. Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study. J. Phys. Chem. C 119(19), 10610–10622 (2015)

    Article  Google Scholar 

  35. Sun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y.: A first-principles study of light non-metallic atom substituted blue phosphorene. Appl. Surf. Sci. 356, 110–114 (2015)

    Article  Google Scholar 

  36. Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W.: Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: a DFT calculation. Solid State Commun. 242, 36–40 (2016)

    Article  Google Scholar 

  37. Bai, R., Chen, Z., Gou, M., Zhang, Y.: A first-principles study of group IV and VI atoms doped blue phosphorene. Solid State Commun. 270, 76–81 (2018)

    Article  Google Scholar 

  38. Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3\(d\) transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016)

    Article  Google Scholar 

  39. Sun, M., Chou, J.-P., Yu, J., Tang, W.: Electronic properties of blue phosphorene/graphene and blue phosphorene/graphenelike gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19(26), 17324–17330 (2017)

    Article  Google Scholar 

  40. Sun, M., Wang, S., Yu, J., Tang, W.: Hydrogenated and halogenated blue phosphorene as Dirac materials: a first principles study. Appl. Surf. Sci. 392, 46–50 (2017)

    Article  Google Scholar 

  41. Banerjee, L., Mukhopadhyay, A., Sengupta, A., Rahaman, H.: Performance analysis of uniaxially strained monolayer black phosphorus and blue phosphorus n-MOSFET and p-MOSFET. J. Comput. Electron. 15(3), 919–930 (2016)

    Article  Google Scholar 

  42. Luo, H.C., Meng, R.S., Gao, H., Sun, X., Xiao, J., Ye, H.Y., Zhang, G.Q., Chen, X.P.: First-principles study of nitric oxide sensor based on blue phosphorus monolayer. IEEE Electron Device Lett. 38(8), 1139–1142 (2017)

    Article  Google Scholar 

  43. Liu, N., Zhou, S.: Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology 28(17), 175708 (2017)

    Article  Google Scholar 

  44. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Portal, D.S.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745–2779 (2002)

    Article  Google Scholar 

  45. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  46. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 43(11), 8861–8869 (1991)

    Article  Google Scholar 

  47. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zon integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  48. Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y.: Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: first-principles study. J. Magn. Magn. Mater. 408, 121–126 (2016)

    Article  Google Scholar 

  49. Sui, X., Si, C., Shao, B., Zou, X., Wu, J., Gu, B.-L., Duan, W.: Tunable magnetism in transition-metal-decorated phosphorene. J. Phys. Chem. C 119(18), 10059–10063 (2015)

    Article  Google Scholar 

  50. Xu, L.-C., Song, X.-J., Yang, Z., Cao, L., Liu, R.-P., Li, X.-Y.: Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl. Surf. Sci. 324, 640–644 (2015)

    Article  Google Scholar 

  51. Ghosh, B., Nahas, S., Bhowmick, S., Agarwal, A.: Electric field induced gap modification in ultrathin blue phosphorus. Phys. Rev. B 91(11), 115433 (2015)

    Article  Google Scholar 

  52. Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90(8), 85402 (2014)

    Article  Google Scholar 

  53. Suvansinpan, N., Hussain, F., Zhang, G., Chiu, C.H., Cai, Y., Zhang, Y.-W.: Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27(6), 65708 (2016)

    Article  Google Scholar 

  54. He, Y., Xia, F., Shao, Z., Zhao, J., Jie, J.: Surface charge transfer doping of monolayer phosphorene via molecular adsorption. J. Phys. Chem. Lett. 6(23), 4701–4710 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Fathipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, F., Fathipour, M. & Yazdanpanah Goharrizi, A. Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study. J Comput Electron 17, 499–513 (2018). https://doi.org/10.1007/s10825-018-1159-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1159-z

Keywords

Navigation