Journal of Computational Electronics

, Volume 17, Issue 2, pp 810–820 | Cite as

Estimating various losses in c-Si solar cells subjected to partial shading: insights into JV performance reduction

  • Zeel Purohit
  • Harsh Chaliyawala
  • Manoj Kumar
  • Brijesh Tripathi
Article
  • 41 Downloads

Abstract

This article reports the effect of partial shading (PS) on the electrical output of a solar cell using the two-diode model. The reduction in electrical performance parameters induced by various recombination losses has been explained for c-Si solar cells under the effect of PS. The PS mainly affects the short-circuit current density \(({J}_{\mathrm{SC}})\) and efficiency \((\eta )\) of the solar cells. \({J}_{\mathrm{SC }}\) and \(\eta \) decrease from 37.84 to 5.48 mA \(\hbox {cm}^{-2}\) and from 18.31 to 2%, respectively. Among all the energy losses encountered for PS, spatial relaxation and recombination losses are the dominating factors responsible for the reduction in \({J}_{\mathrm{SC}}\). PC1D and Griddler simulations have been performed to evaluate the effect of front surface and bulk recombination. The PC1D simulated external quantum efficiency is governed by the front and back surface recombination velocity and carrier life time of the charge carriers under PS. The power loss (\({P}_{\mathrm{e}}\)) of \({\sim }\) 34% from the emitter region has been determined by resistance analysis in correlation with the recombination in the emitter region of the solar cells under PS.

Keywords

Solar photovoltaic Partial shading (PS) Two-diode model External quantum efficiency (EQE) PC1D and Griddler simulation 

Notes

Acknowledgements

The authors acknowledge Dr. Pankaj Yadav for the technical help and would like to thank the Solar Research and Development Center (SRDC), PDPU for providing the facilities and their support.

Supplementary material

10825_2018_1158_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (docx 33 KB)

References

  1. 1.
    Jamil, W.J., Abdul Rahman, H., Shaari, S., Salam, Z.: Performance degradation of photovoltaic power system: Review on mitigation methods. Renew. Sustain. Energy Rev. 67, 876–891 (2017)CrossRefGoogle Scholar
  2. 2.
    Maghami, M.R., Hizam, H., Gomes, C., Radzi, M.A., Rezadad, M.I., Hajighorbani, S.: Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 59, 1307–1316 (2016)CrossRefGoogle Scholar
  3. 3.
    Mani, M., Pillai, R.: Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew. Sustain. Energy Rev. 14, 3124–3131 (2010)CrossRefGoogle Scholar
  4. 4.
    Tripathi, B., Yadav, P., Rathod, S., Kumar, M.: Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India. Energy Convers. Manag. 80, 97–102 (2014)CrossRefGoogle Scholar
  5. 5.
    Sarver, T., Al-Qaraghuli, A., Kazmerski, L.L.: A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 22, 698–733 (2013)CrossRefGoogle Scholar
  6. 6.
    Ramli, M.A.M., Prasetyono, E., Wicaksana, R.W., Windarko, N.A., Sedraoui, K., Al-Turki, Y.A.: On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew. Energy 99, 836–844 (2016)CrossRefGoogle Scholar
  7. 7.
    Lopez-Garcia, J., Pozza, A., Sample, T.: Long-term soiling of silicon PV modules in a moderate subtropical climate. Sol. Energy 130, 174–183 (2016)CrossRefGoogle Scholar
  8. 8.
    Mejia, F., Kleissl, J., Bosch, J.L.: The effect of dust on solar photovoltaic systems. Energy Procedia 49, 2370–2376 (2013)CrossRefGoogle Scholar
  9. 9.
    Mekhilef, S., Saidur, R., Kamalisarvestani, M.: Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16, 2920–2925 (2012)CrossRefGoogle Scholar
  10. 10.
    Bhol, R., Dash, R., Pradhan, A., Ali, S.M.: Environmental effect assessment on performance of solar PV panel. In: IEEE International Conference Circuit, Power and Computing Technologies, ICCPCT (2015)Google Scholar
  11. 11.
    Pavan, A.M., Tessarolo, A., Barbini, N., Mellit, A., Lughi, V.: The effect of manufacturing mismatch on energy production for large-scale photovoltaic plants. Sol. Energy 117, 282–289 (2015)CrossRefGoogle Scholar
  12. 12.
    Ibrahim, A.: Effect of shadow and dust on the performance of silicon solar cell. J. Basic Appl. Sci. Res. 1, 222–230 (2011)Google Scholar
  13. 13.
    Elminir, H.K., Ghitas, A.E., Hamid, R.H., El-Hussainy, F., Beheary, M.M., Abdel-Moneim, K.M.: Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 47, 3192–3203 (2006)CrossRefGoogle Scholar
  14. 14.
    Ghazi, S., Sayigh, A., Ip, K.: Dust effect on flat surfaces: a review paper. Renew. Sustain. Energy Rev. 33, 742–751 (2014)CrossRefGoogle Scholar
  15. 15.
    El-Nashar, A.M.: Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant. Desalination 238, 66–81 (2009)CrossRefGoogle Scholar
  16. 16.
    Karatepe, E., Boztepe, M., Çolak, M.: Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells. Sol. Energy 81, 977–992 (2007)CrossRefGoogle Scholar
  17. 17.
    Ju, F., Fu, X.: Research on impact of dust on solar photovoltaic (PV) performance. In: Proceedings International Conference Electronics Control Engineering (ICECE) (2011)Google Scholar
  18. 18.
    Arbuzov, Y.D., Evdokimov, V.M., Majorov, V.A., Saginov, L.D., Shepovalova, O.V.: Silicon PV cell design and solar intensity radiation optimization for CPV systems. Energy Procedia 74, 1543–1550 (2015)CrossRefGoogle Scholar
  19. 19.
    Ryan, P., Vignola, F., McDaniels, D. K.: Solar cell arrays: degradation due to dirt. In: Proceedings of the American Section of the International Solar Energy Society (1989)Google Scholar
  20. 20.
    Hajighorbani, S., Radzi, M.A.M., Ab Kadir, M.Z.A., Shafie, S., Khanaki, R., Maghami, M.R.: Evaluation of fuzzy logic subsets effects on maximum power point tracking for photovoltaic system. Int. J. Photoenergy 2014, 719126 (2014)Google Scholar
  21. 21.
    Wenham, S.R., Green, M.A., Watt, M.E., Corkish, R., Sproul, A.: Applied Photovoltaics, 3rd edn. Routledge, Oxon (2011)Google Scholar
  22. 22.
    Ghitas, A.E., Sabry, M.: A study of the effect of shadowing location and area on the Si solar cell electrical parameters. Vacuum 81(4), 475–478 (2006)CrossRefGoogle Scholar
  23. 23.
    Salvadores, C., Francisco, J.: Shadowing effect on the performance in solar PV-cells. Master’s Thesis, University of Gavle (2015)Google Scholar
  24. 24.
    Rachchh, R., Kumar, M., Tripathi, B.: Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area. Energy Convers. Manag. 115, 244–252 (2016)CrossRefGoogle Scholar
  25. 25.
    Yadav, P., Kumar, A., Gupta, A., Pachauri, R.K., Chauhan, Y.K., Yadav, V.K.: Investigations on the effects of partial shading and dust accumulation on PV module performance. In: Proceedings of International Conference on Intelligent Communication, Control and Devices (2016)Google Scholar
  26. 26.
    Vijayalekshmy, S., Bindu, G.R., Iyer, S.R.: A novel zig-zag scheme for power enhancement of partially shaded solar arrays. Sol. Energy 135, 92–102 (2016)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Meng, X., Liu, C.: A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renew. Sustain. Energy Rev. 53, 1500–1507 (2016)CrossRefGoogle Scholar
  28. 28.
    Quaschingt, V., Hanitscht, R.: Numerical simulation of current–voltage characteristics of photovoltaic system with shaded solar cells. Sol. Energy 56, 513–520 (1996)CrossRefGoogle Scholar
  29. 29.
    Ji, Y.H., Jung, D.Y., Kim, J.G., Kim, J.H., Lee, T.W., Won, C.Y.: A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 26, 1001–1009 (2011)CrossRefGoogle Scholar
  30. 30.
    Alajmi, B.N., Ahmed, K.H., Finney, S.J., Williams, B.W.: A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids. IEEE Trans. Power Electron. 60, 1596–1606 (2013)Google Scholar
  31. 31.
    Guo, S., Walsh, T., Aberle, A., Peters, M.: Analysing partial shading of PV modules by circuit modelling. In: 38th IEEE Photovoltaic Specialists Conference (2012)Google Scholar
  32. 32.
    Gao, L., Dougal, R.A., Liu, S., Iotova, A.P.: Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans. Power Electron. 56, 1548–1556 (2009)CrossRefGoogle Scholar
  33. 33.
    Feldman, J., Singer, S., Braunstein, A.: Solar cell interconnections and the shadow problem. Sol. Energy 26, 419–428 (1981)CrossRefGoogle Scholar
  34. 34.
    Lu, F., Guo, S., Walsh, T.M., Aberle, A.G.: Improved PV module performance under partial shading conditions. Energy Procedia 33, 248–255 (2013)CrossRefGoogle Scholar
  35. 35.
    Silvestre, S., Chouder, A.: Effects of shadowing on photovoltaic module performance. Prog. Photovolt. Res. Appl. 16, 141–149 (2008)CrossRefGoogle Scholar
  36. 36.
    Sera, D., Baghzouz, Y.: On the impact of partial shading on PV output power. In: 2nd International Conference on Renewable Energy Sources (RES’08) (2008)Google Scholar
  37. 37.
    Luo, H., Wen, H., Li, X., Jiang, L., Hu, Y.: Synchronous buck converter based low-cost and high-efficiency sub-module DMPPT PV system under partial shading conditions. Energy Convers. Manag. 126, 473–487 (2016)CrossRefGoogle Scholar
  38. 38.
    Sabry, M., Ghitas, A.E.: Effect of edge shading on the performance of silicon solar cell. Vacuum 80, 444–450 (2006)CrossRefGoogle Scholar
  39. 39.
    Stutenbaeumer, U., Mesfin, B.: Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells. Renew. Energy 18, 501–512 (1999)CrossRefGoogle Scholar
  40. 40.
    Gigrlach, W., Schlangenotto, H., Maeder, H.: On the radiative recombination rate in silicon. Phys. Stat. Sol. 13, 277–283 (1972)CrossRefGoogle Scholar
  41. 41.
    Saha, S.K, Farhan, A.M, Reba, S.I, Ferdaus, S.I, Chowdhury, Md.I.B.: An analytical model of dark saturation current of silicon solar cell considering both SRH and auger recombination. In: Proceedings of Regional Symposium on Micro and Nanoelectronics (RSM2011) (2011)Google Scholar
  42. 42.
    Huang, X., Fu, H., Chen, H., Lu, Z., Ding, D., Zhao, Y.: Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model. J. Appl. Phys. 119, 213101–213108 (2016)CrossRefGoogle Scholar
  43. 43.
    Belghachi, A.: Detailed analysis of surface recombination in crystalline silicon solar cells. In: International Renewable and Sustainable Energy Conference (IRSEC) (2013)Google Scholar
  44. 44.
    Nelson, J.: The Physics of Solar Cells. Imperial College London, London (2003)CrossRefGoogle Scholar
  45. 45.
    Solanki, C.S.: Solar Photovoltaics Fundamentals, Technologies and Application. PHI Learning Private Limited, New Delhi (2009)Google Scholar
  46. 46.
    Handy, R.J.: Theoretical analysis of the series resistance. Solid-State Electron. 10, 765–775 (1967)Google Scholar
  47. 47.
    Chaudhari, V.A., Solanki, C.S.: From 1 Sun to 10 Suns c-Si cells by optimizing metal grid, metal resistance, and junction depth. Int. J. Photoenergy 2009, 827402 (2009)Google Scholar
  48. 48.
    Ding, D., Johnson, S.R., Yu, S.-Q., Wu, S.-N., Zhang, Y.-H.: A semi-analytical model for semiconductor solar cells. J. Appl. Phys. 110, 123104–123121 (2011)CrossRefGoogle Scholar
  49. 49.
    Wurfel, P.: Physics of Solar Cell. Wiley-VCH Verlag GmbH & Co., New York (2005)CrossRefGoogle Scholar
  50. 50.
    Sero, I.M., Belmonte, G.G., Boix, P.P., Vazquez, M.A., Bisquert, J.: Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ. Sci. 2, 678–686 (2009)CrossRefGoogle Scholar
  51. 51.
    Vasileska, D., Goodnick, S.M.: Computational Electronics. Morgan & Claypool Publishers, San Rafael (2006)Google Scholar
  52. 52.
    Fellmeth, T., Mack, S., Bartsch, J., Erath, D., Jäger, U., Preu, R., Clement, F., Biro, D.: 20.1% efficient silicon solar cell with aluminum back surface field. IEEE Electron Device Lett. 32(8), 1101–1103 (2011)CrossRefGoogle Scholar
  53. 53.
    Michl, B., Rüdiger, M., Giesecke, J., Hermle, M., Warta, W., Schubert, M.: Efficiency limiting bulk recombination in multicrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 98, 441–447 (2012)CrossRefGoogle Scholar
  54. 54.
    Wong, J., Shanmugam, V., Cunnusamy, J., Zahn, M., Zhou, A., Yang, R., Chen, X., Aberle, A., Mueller, T.: Influence of non-uniform fine lines in silicon solar cell front metal grid design. Prog. Photovoltaics Res. Appl. 23(12), 1877–1883 (2015)CrossRefGoogle Scholar
  55. 55.
    Wong, J.: Griddler: intelligent computer aided design of complex solar cell metallization patterns. In: IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013)Google Scholar
  56. 56.
    Shanmugam, V., Wong, J., Peters, I., Cunnusamy, J., Zahn, M., Zhou, A., Yang, R., Chen, X., Aberle, A., Mueller, T.: Analysis of fine-line screen and stencil-printed metal contacts for silicon wafer solar cells. IEEE J. Photovolt. 5(2), 525–533 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science, School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia
  2. 2.Solar Research and Development Centre, School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations