Journal of Computational Electronics

, Volume 17, Issue 2, pp 682–688 | Cite as

Simulation of effects of emitter and collector widths on performance of silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs)

  • A. Khadir
  • N. Sengouga
  • A. Kouzou
  • M. K. Abdelhafidi


The effects of the emitter and intrinsic collector widths on the direct-current (DC) current gain (\(\beta _{\mathrm{F}}\)), cutoff frequency (\(f_{\mathrm{T}}\)), and maximum oscillation frequency (\(f_{\mathrm{MAX}}\)) of silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) have been investigated using energy balance (EB) and drift–diffusion (DD) models in the SILVACO technology computer-aided design software. The EB and DD carrier transport models are presented. The base thickness of the simulated SiGe HBTS is 15 nm. The results for different widths are presented and analyzed.


SiGe HBT Emitter width SILVACO Current gain Cutoff frequency Maximum oscillation frequency 



The authors express their gratitude to colleagues and individuals for their help and support in completing this paper.


  1. 1.
    Chakraborty, P.S., Moen, K.A., Cressler, J.D.: An investigation on the optimization and scaling of complementary SiGe HBTs. IEEE Trans. Electron Devices 60, 34–41 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhao, E., Sutton, A.K., Haugerud, B.M., Cressler, J.D., Marshall, P.W., Reed, R.A., El-Kareh, B., Balster, S., Yasuda, H.: The effects of radiation on 1/f noise in complementary (npn + pnp) SiGe HBTs. IEEE Trans. Nucl. Sci. 51, 3243–3249 (2004)CrossRefGoogle Scholar
  3. 3.
    Bellini, M., Jun, B., Sutton, A.K., Appaswamy, A.C., Cheng, P., Cressler, J.D., Marshall, P.W., Schrimpf, R.D., Fleetwood, D.M., El-Kareh, B., Balster, S., Steinmann, P., Yasuda, H.: The effects of proton and X-ray irradiation on the DC and AC performance of complementary (npn + pnp) SiGe HBTs on thick-film SOI. IEEE Trans. Nucl. Sci. 54, 2245–2250 (2007)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, P.S., Appaswamy, A.C., Saha, P.K., Jha, N.K., Cressler, J.D., Yasuda, H., Eklund, B., Wise, R.: Mixed-mode stress degradation mechanisms in pnp SiGe HBTs. IEEE International Reliability Physics Symposium (IRPS), pp. 83–88 (2009)Google Scholar
  5. 5.
    Zerounian, N., Aniel, F., Barbalat, B., Chevalier, P., Chantre, A.: 500 GHz cutoff frequency SiGe HBTs. Electron. Lett. 43, 774–775 (2007)Google Scholar
  6. 6.
    Al-Sa’di, M., Fregonese, S., Maneux, C., Zimmer, T.: TCAD modeling of NPN-SiGe-HBT electrical performance improvement through extrinsic stress layer. In: IEEE 27th International Conference on Microelectronics Proceedings, pp. 387–390 (2010)Google Scholar
  7. 7.
    Rücker, H., Heinemann, B., Winkler, W., Barth, R., Borngräber, J., Drews, J., Fischer, G.G., Fox, A., Grabolla, T., Haak, U., Knoll, D., Korndörfer, F., Mai, A., Marschmeyer, S., Schley, P., Schmidt, D., Schmidt, J., Schubert, M.A., Schulz, K., Tillack, B., Wolansky, D., Yamamoto, Y.: A 0.13 \(\mu \)m BiCMOS technology featuring \({f}_{\rm T}/{f}_{\rm max}\) of 240/330 GHz and gate delays below 3 ps. IEEE J. Solid State Circuits 45, 1678–1686 (2010)CrossRefGoogle Scholar
  8. 8.
    Rücker, H., Heinemann, B., Fox, A.: Half-terahertz SiGe BiCMOS technology. In: IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 133–136 (2012)Google Scholar
  9. 9.
    Chevalier, P., Meister, T.F., Heinemann, B., Huylenbroeck, S.V., Liebl, W., Fox, A., Sibaja-Hernandezl, A., Chantre, A.: Towards THz SiGe HBTs. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp. 57–65 (2011)Google Scholar
  10. 10.
    Heinemann, B., Barth, R., Bolze, D., Drews, G., Fischer, G.G., Fox, A., Fursenko, O., Grabolla, T., Haak, U., Knoll, D., Kurps, R., Lisker, M., Marschmeyer, S., Rücker, H., Schmidt, D., Schmidt, J., Schubert, M.A., Tillack, B., Wipf, C., Wolansky, D., Yamamoto, Y.: SiGe HBT technology with \({f}_{\rm T}/{f}_{\rm max}\) of 300/500 GHz and 2.0 ps CML gate delay. In: IEEE International Electron Devices Meeting (IEDM), pp. 688–691 (2010)Google Scholar
  11. 11.
    Juan, M., Lopez-Gonzalez, J.M., Michael Schröter, M.: Study of emitter width effects on \(\beta _{\rm F}\), \(f_{\rm T}\) and \(f_{\rm max}\) of 200 GHz SiGe HBTs by DD, HD and EB device simulation. Semicond. Sci. Technol. (2009)
  12. 12.
    Jungemann, C., Neinhus, B., Meinerzhagen, B.: Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT. IEEE Trans. Electron Devices 48, 2216–2220 (2001)CrossRefGoogle Scholar
  13. 13.
    Ieong, M.K., Tang, T.W.: Influence of hydrodynamic models in the prediction of sub-micrometer device characteristics. IEEE Trans. Electron Devices 44, 2242–2251 (1997)CrossRefGoogle Scholar
  14. 14.
    Atlas user’s manual. Accessed 30 January 2012
  15. 15.
    Maiti, C.K.: Computer Aided Design of Micro- and Nanoelectronic Devices. World Scientific Publishing Company, Singapore (2016)Google Scholar
  16. 16.
    Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (1962)CrossRefGoogle Scholar
  17. 17.
    Stratton, R.: Semiconductor current-flow equations (diffusion and degeneracy). IEEE Trans. Electron Devices 19, 1288–1292 (1972)CrossRefGoogle Scholar
  18. 18.
    Shi, Y., Niu, G.: 2-D analysis of device parasitics for 800/1000 GHz \(f_{\rm T} /f_{\rm max}\) SiGe HBT. In: Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, pp. 252–255 (2005)Google Scholar
  19. 19.
    Schaeffler, F.: High-mobility Si and Ge structures. Semicond. Sci. Technol. (1997). Google Scholar
  20. 20.
    Vasileska, D., Goodnick, S.M.: Computational Electronics. Morgan & Claypool, Arizona (2006)Google Scholar
  21. 21.
    Rein, H.M.: Proper choice of the measuring frequency for determining \(f_{\rm T}\) of bipolar transistors. Solid-State Electron. 26, 75–82 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Khadir
    • 1
    • 2
  • N. Sengouga
    • 1
  • A. Kouzou
    • 3
  • M. K. Abdelhafidi
    • 2
  1. 1.Laboratory of Metallic and Semiconducting MaterialsUniversité de BiskraBiskraAlgeria
  2. 2.Materials Science and Informatics LaboratoryUniversity of DjelfaDjelfaAlgeria
  3. 3.Applied Automation and Industrial Diagnosis LaboratoryUniversity of DjelfaDjelfaAlgeria

Personalised recommendations