Journal of Computational Electronics

, Volume 17, Issue 2, pp 653–662 | Cite as

An improved model to assess temperature-dependent DC characteristics of submicron GaN HEMTs

  • M. N. Khan
  • U. F. Ahmed
  • M. M. Ahmed
  • S. Rehman


A modified analytical model for the current–voltage (IV) characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) is presented, considering the temperature-dependent: (a) Schottky barrier height, (b) energy bandgap discontinuity, (c) carrier mobility, and (d) saturation velocity. It is demonstrated that the Schottky barrier height and energy bandgap discontinuity decrease with increase of the temperature. The effective mobility of the two-dimensional electron gas (2-DEG) also decreases with increasing temperature, causing a reduction in the output current of the device. The model was tested over a wide range of temperatures (300–500 K) and bias, and it was observed that the developed model can successfully predict the IV characteristic of the device with reasonable accuracy, especially at high temperatures (\(\sim 500\) K). It is shown that the developed model offers, on average, a 39 % improvement for the temperature variation, from 300–500 K, relative to the best model reported in literature.


AlGaN/GaN HEMTs DC modeling Elevated-temperature characteristics 


  1. 1.
    Ahmed, A., Islam, S.S., Anwar, A.: A temperature-dependent nonlinear analysis of GaN/AlGaN HEMTs using volterra series. IEEE Trans. Microw. Theory Tech. 49(9), 1518–1524 (2001)CrossRefGoogle Scholar
  2. 2.
    Albrecht, J., Wang, R., Ruden, P., Farahmand, M., Brennan, K.: Electron transport characteristics of GaN for high temperature device modeling. J. Appl. Phys. 83(9), 4777–4781 (1998)CrossRefGoogle Scholar
  3. 3.
    Alim, M.A., Rezazadeh, A.A., Gaquiere, C.: Temperature effect on DC and equivalent circuit parameters of 0.15 \(um\) gate length GaN/SiC HEMT for microwave applications. IEEE Trans. Microw. Theory Tech. 64(11), 3483–3491 (2016)CrossRefGoogle Scholar
  4. 4.
    Arulkumaran, S., Liu, Z., Ng, G., Cheong, W., Zeng, R., Bu, J., Wang, H., Radhakrishnan, K., Tan, C.: Temperature dependent microwave performance of AlGaN/GaN high-electron-mobility transistors on high-resistivity silicon substrate. Thin Solid Films 515(10), 4517–4521 (2007)CrossRefGoogle Scholar
  5. 5.
    Chang, Y., Tong, K., Surya, C.: Numerical simulation of current-voltage characteristics of AlGaN/GaN HEMTs at high temperatures. Semicond. Sci. Technol. 20(2), 188 (2005)CrossRefGoogle Scholar
  6. 6.
    Huque, M., Eliza, S., Rahman, T., Huq, H., Islam, S.: Temperature dependent analytical model for current–voltage characteristics of AlGaN/GaN power HEMT. Solid-State Electron. 53(3), 341–348 (2009)CrossRefGoogle Scholar
  7. 7.
    Wang, Y.-H., Liang, Y.C., Samudra, G.S., Chang, T.-F., Huang, C.-F., Yuan, L., Lo, G.-Q.: Modelling temperature dependence on AlGaN/GaN power HEMT device characteristics. Semicond. Sci. Technol. 28(12), 125010 (2013)CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, M.K., Tokekar, S.: Thermal model for DC characteristics of algan/gan hemts including self-heating effect and non-linear polarization. Microelectron. J. 39(10), 1181–1188 (2008)CrossRefGoogle Scholar
  9. 9.
    Millan, J., Godignon, P., Perpina, X., Pérez-Tomás, A., Rebollo, J.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)CrossRefGoogle Scholar
  10. 10.
    Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60(6), 1764–1783 (2012)CrossRefGoogle Scholar
  11. 11.
    Neaman, D.A.: Semiconductor Physics and Devices. Irwin, Chicago (1992)Google Scholar
  12. 12.
    Zolper, J.: A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electron. 42(12), 2153–2156 (1998)CrossRefGoogle Scholar
  13. 13.
    Greco, G., Giannazzo, F., Roccaforte, F.: Temperature dependent forward current-voltage characteristics of Ni/Au schottky contacts on AlGaN/GaN heterostructures described by a two diodes model. J. Appl. Phys. 121(4), 045701 (2017)CrossRefGoogle Scholar
  14. 14.
    Maeda, T., Okada, M., Ueno, M., Yamamoto, Y., Kimoto, T., Horita, M., Suda, J.: Temperature dependence of barrier height in Ni/n-GaN schottky barrier diode. Appl. Phys. Express 10(5), 051002 (2017)CrossRefGoogle Scholar
  15. 15.
    Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid-State Electron. 121, 54–61 (2016)CrossRefGoogle Scholar
  16. 16.
    Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)CrossRefGoogle Scholar
  17. 17.
    Shur, M., Gelmont, B., Khan, M.A.: Electron mobility in two-dimensional electron gas in AlGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25(5), 777–785 (1996)CrossRefGoogle Scholar
  18. 18.
    Shigekawa, N., Shiojima, K., Suemitsu, T.: Optical study of high-biased AlGaN/GaN high-electron-mobility transistors. J. Appl. Phys. 92(1), 531–535 (2002)CrossRefGoogle Scholar
  19. 19.
    Oxley, C., Uren, M.: Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor. IEEE Trans. Electron Devices 52(2), 165–169 (2005)CrossRefGoogle Scholar
  20. 20.
    Ambacher, O., Smart, J., Shealy, J., Weimann, N., Chu, K., Murphy, M., Schaff, W., Eastman, L., Dimitrov, R., Wittmer, L., et al.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)CrossRefGoogle Scholar
  21. 21.
    Yalamarthy, A.S., Senesky, D.G.: Strain-and temperature-induced effects in AlGaN/GaN high electron mobility transistors. Semicond. Sci. Technol. 31(3), 035024 (2016)CrossRefGoogle Scholar
  22. 22.
    Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)CrossRefGoogle Scholar
  23. 23.
    DasGupta, N., DasGupta, A.: An analytical expression for sheet carrier concentration versus gate voltage for HEMT modelling. Solid-State Electron. 36(2), 201–203 (1993)CrossRefGoogle Scholar
  24. 24.
    Huq, H.F.: Temperature dependent analytical modeling, simulation and characterizations of HEMTs in gallium nitride process. PhD diss., University of Tennessee (2006).
  25. 25.
    Dasgupta, N., Dasgupta, A.: A new spice mosfet level 3-like model of HEMT’s for circuit simulation. IEEE Trans. Electron Devices 45(7), 1494–1500 (1998)CrossRefGoogle Scholar
  26. 26.
    Sodini, C.G., Ko, P.-K., Moll, J.L.: The effect of high fields on MOS device and circuit performance. IEEE Trans. Electron Devices 31(10), 1386–1393 (1984)CrossRefGoogle Scholar
  27. 27.
    Schwierz, F.: An electron mobility model for wurtzite GaN. Solid-State Electron. 49(6), 889–895 (2005)CrossRefGoogle Scholar
  28. 28.
    Xiao-Guang, H., De-Gang, Z., De-Sheng, J.: Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin. Phys. B 24(6), 067301 (2015)CrossRefGoogle Scholar
  29. 29.
    Grebene, A., Ghandhi, S.: General theory for pinched operation of the junction-gate FET. Solid-State Electron. 12(7), 573–589 (1969)CrossRefGoogle Scholar
  30. 30.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, 2007. SIS 2007, pp. 120–127. IEEE (2007)Google Scholar
  31. 31.
    Ahmed, M.M., Ahmed, H., Ladbrooke, P.H.: Effects of interface states on submicron gaas metal-semiconductor field-effect transistors assessed by gate leakage current. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(4), 1519–1525 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. N. Khan
    • 1
  • U. F. Ahmed
    • 1
  • M. M. Ahmed
    • 1
  • S. Rehman
    • 1
  1. 1.Department of Electrical EngineeringCapital University of Science and TechnologyIslamabadPakistan

Personalised recommendations