Skip to main content
Log in

Spin-dependent transport in a multifunctional spintronic device with graphene nanoribbon electrodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigated the spin-dependent transport properties of a molecular device consisting of a phenanthrene molecule anchored via two carbon atoms to zigzag graphene nanoribbon electrodes, using density functional theory combined with the nonequilibrium Green’s function method. The results of the calculations show that the device exhibits perfect spin filtering and negative differential resistance effect in both parallel and antiparallel configuration, and perfect dual spin filtering and large spin rectification in antiparallel configuration. In addition, we changed the direction of the phenanthrene plane to be perpendicular to the two electrode planes, enabling molecular switching. The proposed structure combines interesting properties that enable its use in multifunctional nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, L.H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M.G., Han, X.D.: Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014)

    Google Scholar 

  2. Wang, L.H., Zhang, Z., Han, X.D.: In situ experimental mechanics of nanomaterial sat the atomic scale. NPG Asia Mater. 5, e40 (2013)

    Article  Google Scholar 

  3. Ventra, M.D., Pantelides, S.T., Lang, N.D.: First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979 (2000)

    Article  Google Scholar 

  4. Nitzan, A., Ratner, M.A.: Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003)

    Article  Google Scholar 

  5. Rocha, A.R., García-Suárez, V.M., Bailey, S.W., Lambert, C.J., Ferrer, J., Sanvito, S.: Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005)

    Article  Google Scholar 

  6. Baadji, N., Sanvito, S.: Giant resistance change across the phase transition in spin-crossover molecules. Phys. Rev. Lett. 108, 217201 (2012)

    Article  Google Scholar 

  7. Chen, F., He, J., Nuckolls, C., Roberts, T., Klare, J.E., Lindsay, S.: A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005)

    Article  Google Scholar 

  8. Malic, E., Weber, C., Richter, M., Atalla, V., Klamroth, T., Saalfrank, P., Reich, S., Knorr, A.: Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches. Phys. Rev. Lett. 106, 097401 (2011)

    Article  Google Scholar 

  9. Jia, C.C., Guo, X.F.: Molecule-electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 42, 5642–5660 (2013)

    Article  Google Scholar 

  10. Jia, C.C., Migliore, A., Xin, N., Huang, S.Y., Wang, J.Y., Yang, Q., Wang, S.P., Chen, H.L., Wang, D.M., Feng, B.Y., Liu, Z.R., Zhang, G.Y., Qu, D.H., Tian, H., Ratner, M.A., Xu, H.Q., Nitzan, A., Guo, X.F.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016)

    Article  Google Scholar 

  11. Zeng, J., Chen, K.Q.: Spin filtering, magnetic and electronic switching behaviors in manganese porphyrin-based spintronic devices. J. Mater. Chem. C 1, 4014–4019 (2013)

    Article  Google Scholar 

  12. Zhang, D., Long, M.Q., Zhang, X.J., Xu, H.: High performance bipolar spin filtering and switching functions of poly-(terphenylene-butadiynylene) between zigzag graphene nanoribbon electrodes. Rsc Adv. 5, 96455–96463 (2015)

    Article  Google Scholar 

  13. Zeng, M.G., Shen, L., Cai, Y.Q., Sha, Z.D., Feng, Y.P.: Perfect spin-filter and spin-valve in carbon atomic chains. Appl. Phys. Lett. 96, 042104 (2010)

    Article  Google Scholar 

  14. Hong, X.K., Kuang, Y.W., Qian, C., Tao, Y.M., Yu, H.L., Zhang, D.B., Liu, Y.S., Feng, J.F., Yang, X.F., Wang, X.F.: Axisymmetric all-carbon devices with high-spin filter efficiency, large-spin rectifying, and strong-spin negative differential resistance properties. J. Phys. Chem. C 120, 668–676 (2016)

    Article  Google Scholar 

  15. Zeng, J., Chen, K.Q., He, J., Zhang, X.J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)

    Article  Google Scholar 

  16. Tan, C.M., Zhou, Y.H., Chen, C.Y., Yu, J.F., Chen, K.Q.: Spin filtering and rectifying effects in the zinc methyl phenalenyl molecule between graphene nanoribbon leads. Org. Electron. 28, 244–251 (2016)

    Article  Google Scholar 

  17. Long, M.Q., Chen, K.Q., Wang, L.L., Zou, B.S., Shuai, Z.G.: Negative differential resistance induced by intermolecular interaction in a bimolecular device. Appl. Phys. Lett. 91, 233512 (2007)

    Article  Google Scholar 

  18. Wan, H.Q., Xu, Y., Zhou, G.H.: Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. J. Chem. Phys. 136, 184704 (2012)

    Article  Google Scholar 

  19. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnár, S.V., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  20. Hu, Y.B., Zhu, Y., Gao, H.J., Guo, H.: Conductance of an ensemble of molecular wires: a statistical analysis. Phys. Rev. Lett. 95, 156803 (2005)

    Article  Google Scholar 

  21. Koo, H.C., Kwon, J.H., Eom, J., Chang, J., Han, S.H., Johnson, M.: Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009)

    Article  Google Scholar 

  22. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  23. Sun, C.Q., Sun, Y., Nie, Y.G., Wang, Y., Pan, J.S., Ouyang, G., Pan, L.K., Sun, Z.: Coordination-resolved C-C Bond length and the C 1s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J. Phys. Chem. C 113, 16464–16467 (2009)

    Article  Google Scholar 

  24. Lam, K.T., Lee, C., Liang, C.: Bilayer graphene nanoribbon nanoelectromechanical system device: a computational study. Appl. Phys. Lett. 95, 143107 (2009)

    Article  Google Scholar 

  25. Wei, J., Zang, Z.G., Zhang, Y.B., Du, J., Tang, X.S.: Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42, 911–914 (2017)

    Article  Google Scholar 

  26. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  27. Yazyev, O.V., Katsnelson, M.I.: Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008)

    Article  Google Scholar 

  28. Kan, E.J., Li, Z.Y., Yang, J.L., Hou, J.G.: Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 130, 4224–4225 (2008)

    Article  Google Scholar 

  29. Yan, Q.M., Huang, B., Yu, J., Zheng, F.W., Zang, J., Wu, J., Gu, B.L., Liu, F., Duan, W.H.: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7, 1469–1473 (2007)

    Article  Google Scholar 

  30. Wan, H.Q., Zhou, B.H., Chen, X.W., Sun, C.Q., Zhou, G.H.: Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J. Phys. Chem. C 116, 2570–2574 (2012)

    Article  Google Scholar 

  31. Wu, Q.H., Zhao, P., Chen, G.: Magnetic transport properties of DBTAA-based nanodevices with graphene nanoribbon electrodes. Org. Electron. 25, 308–316 (2015)

    Article  Google Scholar 

  32. Zhao, P., Wu, Q.H., Liu, H.Y., Liu, D.S., Chen, G.: A first-principles study of the spin transport properties of a 4H-TAHDI-based multifunctional spintronic device with graphene nanoribbon electrodes. J. Mater. C. 2, 6648–6654 (2014)

    Google Scholar 

  33. Hla, S.W., Bartels, L., Meyer, G., Rieder, K.H.: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777 (2000)

    Article  Google Scholar 

  34. Madsen, C.B., Madsen, L.B., Viftrup, S.S., Johansson, S.S., Poulsen, T.B., Holmegaard, L., Kumarappan, V., Jørgensen, K.A., Stapelfeldt, H.: Manipulating the torsion of molecules by strong laser pulses. Phys. Rev. Lett. 102, 073007 (2009)

    Article  Google Scholar 

  35. Vergniory, M.G., Granadino-Roldan, J.M., Garcia-Lekue, A., Wang, L.W.: Molecular conductivity switching of two benzene rings under electric field. Appl. Phys. Lett. 97, 262114 (2010)

    Article  Google Scholar 

  36. Kislov, V.V., Mebel, A.M., Lin, S.H.: Ab initio and DFT study of the formation mechanisms of polycyclic aromatic hydrocarbons: the phenanthrene synthesis from biphenyl and naphthalene. J. Phys. Chem. A 106, 6171–6182 (2002)

    Article  Google Scholar 

  37. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, J.K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  38. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001)

    Article  Google Scholar 

  39. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

  40. Wang, Y.H., Liu, Y.L., Wang, B.: Graphene spin diode: strain-modulated spin rectification. Appl. Phys. Lett. 105, 052409 (2014)

    Article  Google Scholar 

  41. Zeng, M.G., Shen, L., Zhou, M., Zhang, C., Feng, Y.P.: Graphene-based bipolar spin diode and spin transistor: rectification and amplification of spin-polarized current. Phys. Rev. B 83, 115427 (2011)

    Article  Google Scholar 

  42. Alekseev, E., Pavlidis, D.: Large-signal microwave performance of GaN-based NDR diode oscillators. Solid-State Electron. 44, 941–947 (2000)

    Article  Google Scholar 

  43. Fan, Z.Q., Xie, F., Jiang, X.W., Wei, Z.M., Li, S.S.: Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes. Carbon 110, 200–206 (2016)

    Article  Google Scholar 

  44. Wang, L.H., Han, X.D., Liu, P., Yue, Y.G., Zhang, Z., Ma, E.: In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 105, 135501 (2010)

    Article  Google Scholar 

  45. Seminario, J.M., Zacarias, A.G., Tour, J.M.: Theoretical study of a molecular resonant tunneling diode. J. Am. Chem. Soc. 122, 3015–3020 (2000)

    Article  Google Scholar 

  46. Zhou, Y.H., Yuan, L.Z., Zheng, X.H.: Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent. Comp. Mater. Sci. 61, 145–149 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities under grant nos. JUSRP51628B and JUSRP51716A, and Postgraduate Research and Practice Innovation Program of Jiangsu Province Under Grant No. SJCX17_0497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Yang, J., Yuan, P. et al. Spin-dependent transport in a multifunctional spintronic device with graphene nanoribbon electrodes. J Comput Electron 17, 604–612 (2018). https://doi.org/10.1007/s10825-018-1148-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1148-2

Keywords

Navigation