Skip to main content
Log in

Design of a high bitrate optical decoder based on photonic crystals

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


This paper presents a triangular lattice of two-dimensional photonic crystal in the design of a novel all-optical \(1\times 2\) decoder. To control and conduct light, linear and point defects were developed in curved directions. In addition to the main entrance, a controlling entrance was assumed to control light using light interference theory when the input source is active and to activate the intended output in its absence. Logical values of “0” and “1” are introduced based on the ratio of output-to-input power. Plane wave expansion is used to calculate band structure of the lattice and the finite difference time domain method is used to calculate the optical power distribution in waveguide paths. The key feature of the proposed structure are low size and contrast enhancement, which will reduce the error in the decoder output. The results show that the structure can be used as a decoder with a bit rate of about 2 Tbit/s and time delay of 0.1 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  3. Joannopoulos, D.J., Johnson, G.S., Winn, N.J., Meade, R.D.: Photonic Crystals: Modeling the Flow of Light, second edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  4. Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787 (1996)

    Article  Google Scholar 

  5. Yuan, J., Yang, J., Shi, D., Ai, W., Shuai, T.: Design optimization of a low-loss and wide-band sharp \(120^{\circ }\) waveguide bend in 2D photonic crystals. Opt. Commun. 367, 356–363 (2016)

    Article  Google Scholar 

  6. Combrie, S., Rossi, A.D., Morvan, L., Tonda, S., Cassette, S., Dolfi, D., Talneau, A.: Time-delay measurement in single mode, low-loss photonic crystal waveguides. Electron. Lett. 42(2), 86–88 (2006)

    Article  Google Scholar 

  7. Lin, W., Miao, Y., Song, B., Zhang, H., Liu, B., Liu, Y., Yan, D.: Multimodal transmission property in a liquid-filled photonic crystal fiber. Opt. Commun. 336, 14–19 (2015)

    Article  Google Scholar 

  8. Hsu, J.M., Zheng, W.H., Lee, C.L., Horng, J.S.: Theoretical investigation of a dispersion compensating photonic crystal fiber with ultra-high dispersion coefficient and extremely low confinement loss. Photonics Nanostructures Fundam. Appl. 16, 1–8 (2015)

    Article  Google Scholar 

  9. Kalantari, M., Karimkhani, A., Saghaei, H.: Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik 158, 142–151 (2017)

    Article  Google Scholar 

  10. Sathyadevaki, R., Raja, A.S., Sundar, D.S.: Photonic crystal-based optical filter: a brief investigation. Photon Netw. Commun. 33(1), 77–84 (2017)

    Article  Google Scholar 

  11. Goyal, A.K., Pal, S.: Design and simulation of high sensitive photonic crystal waveguide sensor. Opt. Int. J. Light Electron Opt. 126(2), 240–243 (2015)

    Article  Google Scholar 

  12. Ho, C.P., Li, B., Danner, A.J., Lee, C.: Design and modeling of 2-D photonic crystals based hexagonal triple-nano-ring resonators as biosensors. Microsyst. Technol. 19, 53–60 (2013)

    Article  Google Scholar 

  13. Krauss, T.F.: Slow light in photonic crystal waveguides. Appl. Phys. 40, 2666–2670 (2007)

    Google Scholar 

  14. Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Design of high-Q cavities in 2D photonic crystals air holes filled withpolymer. Optik 125, 6223–6226 (2014)

    Article  Google Scholar 

  15. Liu, L., Qu, H., Liu, Y., Wang, Y., Qi, A., Guo, X., Zhao, P., Zhang, Y., Zheng, W.: Design and analysis of laser diodes based on the longitudinal photonic band crystal concept for high power and narrow vertical divergence. IEEE J. Sel. Top. Quantum Electron. (2015).

    Google Scholar 

  16. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31(1), 65–70 (2016)

    Article  Google Scholar 

  17. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29, 146–150 (2015)

    Article  MATH  Google Scholar 

  18. Wang, Z.Y., Yu, Z.H., Zheng, X.D., Wang, L.: \(1\times 2\) beam splitter with high efficiency based on nonreciprocal photonic crystal waveguide. J. Electromagn. Waves Appl. 26(11), 1476–1482 (2012)

    Article  Google Scholar 

  19. Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik 124, 824–827 (2013)

    Article  Google Scholar 

  20. Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)

    Article  Google Scholar 

  21. Zhang, C., Qiu, K.: Design and analysis of coherent OCDM en/decoder based on photonic crystal. Opt. Lasers Eng. 46(8), 582–589 (2008)

    Article  Google Scholar 

  22. Alipour-Banaei, H., Ghorbanzadeh-Rabati, M., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30(11), 1440–1448 (2016)

    Article  Google Scholar 

  23. Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photon Netw. Commun. 33(2), 159–165 (2016)

    Article  Google Scholar 

  24. Alipour-Banaei, H., serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014)

    Article  Google Scholar 

  25. Mukherjee, B., Kumar, V.D., Gupta, M.: A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems. Int. J. Electron. Commun. (AEU) 68, 1185–1190 (2014)

    Article  Google Scholar 

  26. Entezar, S.R., Madani, A., Namdar, A., Tajalli, H.: Effect of anisotropy on the photonic band gap and surface polaritons of a one-dimensional single-negative photonic crystal. J. Magn. Magn. Mater. 324(9), 1739–1744 (2012)

    Article  Google Scholar 

  27. Yasumoto, K.: Electromagnetic Theory and Applications for Photonic Crystals. Taylor & Francis, London (2006)

    Google Scholar 

  28. Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals: Physics and Practical Modeling. Springer, Berlin (2009).

    Book  Google Scholar 

Download references


The authors would like to thank the Kermanshah Branch, Islamic Azad University for supporting of this research project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fariborz Parandin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parandin, F., Karkhanehchi, M.M., Naseri, M. et al. Design of a high bitrate optical decoder based on photonic crystals. J Comput Electron 17, 830–836 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI: