Skip to main content
Log in

Effect of temperature on the performance analysis of MLGNR interconnects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Multi-layer graphene nanoribbons (MLGNR) have been proposed as a possible interconnect material. Based on an equivalent single-conductor model of an intercalation-doped MLGNR (ID-MLGNR) interconnect, along with mixed carbon-nanotube bundle (MCB) interconnects, a comparative temperature-dependent study is performed with regard to their distributed circuit parameters and signal transmission performance in terms of delay, power dissipation, and power–delay product (PDP) at the global domain of interconnects. A similar analysis is carried out for copper (Cu) interconnects, and the results are compared with ID-MLGNR and MCB interconnects at the 14-nm technology node. Four different structures of MCB (MCBs 1–4), with and without tunneling effects, are considered here. The SPICE simulation results reveal that for 1-mm-long interconnects, stage-2 AsF5 ID-MLGNR with nearly specular edges have lower delay, power dissipation, and PDP in comparison to MCBs (1–4) with tunneling effects and conventional Cu interconnects over a temperature range of 300 to 500 K. With regard to propagation delay and power dissipation, it has also been shown that MCB interconnects with non-consideration of tunneling effects outperform MCB interconnects with tunneling effects. Additionally, among the MCB (1–4) structures, MCB-1 consistently has lower delay within a temperature range from 300 to 500 K. Moreover, an average improvement in relative delay of 23.78% and 37.66% is observed for ID-MLGNR interconnects in comparison with the best delay structure of MCBs, i.e. MCB-1, and Cu interconnects, respectively, over a temperature range of 300 to 500 K. It is proposed that, in the context of reduced propagation delay, power dissipation, and PDP, ID-MLGNR interconnects hold greater promise than MCB and Cu interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconnects for VLSI applications. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 383–390. IEEE Computer Society (2005)

  2. Hosseini, A., Shabro, V.: Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)

    Article  Google Scholar 

  3. Rai, M.K., Sarkar, S.: Temperature dependent crosstalk analysis in coupled single-walled carbon nanotube (SWCNT) bundle interconnects. Int. J. Circuit Theory Appl. 43(10), 1367–1378 (2015)

    Article  Google Scholar 

  4. Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P.: Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101(9), 096802 (2008)

    Article  Google Scholar 

  5. Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)

    Article  Google Scholar 

  6. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Dev. 56(8), 1567–1578 (2009)

    Article  Google Scholar 

  7. Rai, M.K., Kaushik, B.K., Sarkar, S.: Thermally aware performance analysis of single-walled carbon nanotube bundle as VLSI interconnects. J. Comput. Electron. 15(2), 407–419 (2016)

    Article  Google Scholar 

  8. Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Dev. 56(9), 1822–1833 (2009)

    Article  Google Scholar 

  9. Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)

    Article  Google Scholar 

  10. Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)

    Article  Google Scholar 

  11. Rossi, D., Cazeaux, J.M., Metra, C., Lombardi, F.: Modeling crosstalk effects in CNT bus architectures. IEEE Trans. Nanotechnol. 6(2), 133–145 (2007)

    Article  Google Scholar 

  12. Majumder, M.K., Pandya, N.D., Kaushik, B.K., Manhas, S.K.: Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Dev. Lett. 33(8), 1180–1182 (2012)

    Article  Google Scholar 

  13. Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D.W., Wong, C.P.: Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44(2), 253–258 (2006)

    Article  Google Scholar 

  14. Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M.: Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106(10), 2429–2433 (2002)

    Article  Google Scholar 

  15. Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 56(6), 1666–1673 (2014)

    Article  Google Scholar 

  16. Pandya, N.D., Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Performance comparison of mixed CNT bundle in global VLSI interconnect. In: 2012 International Conference on Communication Systems and Network Technologies (CSNT), pp. 790–793. IEEE (2012)

  17. Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of mixed CNT bundle interconnects: impact on delay and power dissipation. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC), (pp. 1–4). IEEE (2012)

  18. Zhao, W.S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)

    Article  Google Scholar 

  19. Shioya, J., Matsubara, H., Murakami, S.: Properties of AsF5-intercalated vapor-grown graphite. Synth. Met. 14(1–2), 113–123 (1986)

    Article  Google Scholar 

  20. Liao, A.D., Wu, J.Z., Wang, X., Tahy, K., Jena, D., Dai, H., Pop, E.: Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106(25), 256801 (2011)

    Article  Google Scholar 

  21. Chen, X., Seo, D.H., Seo, S., Chung, H., Wong, H.S.P.: Graphene interconnect lifetime: a reliability analysis. IEEE Electron Dev. Lett. 33(11), 1604–1606 (2012)

    Article  Google Scholar 

  22. Jiang, J., Kang, J., Cao, W., Xie, X., Zhang, H., Chu, J.H., Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)

    Article  Google Scholar 

  23. Jiang, J., Kang, J., Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: 2017 IEEE International on Reliability Physics Symposium (IRPS), pp. 6B-1. IEEE (2017)

  24. Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)

    Article  Google Scholar 

  25. Rai, M.K., Arora, S., Kaushik, B.K.: Temperature-dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46(2), 299–312 (2018)

    Article  Google Scholar 

  26. Pop, E., Mann, D., Reifenberg, J., Goodson, K., Dai, H.: Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications. In: IEEE International Electron Devices Meeting. IEDM Technical Digest, pp. 4–7. IEEE (2005)

  27. Nasiri, S.H., Faez, R., Moravvej-Farshi, M.K.: Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures. Mod. Phys. Lett. B 26(01), 1150004 (2012)

    Article  MATH  Google Scholar 

  28. Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81(19), 195442 (2010)

    Article  Google Scholar 

  29. Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)

    Article  Google Scholar 

  30. Perebeinos, V., Avouris, P.: Current saturation and surface polar phonon scattering in graphene. arXiv preprint arXiv:0910.4665 (2009)

  31. Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Dev. 55(6), 1328–1337 (2008)

    Article  Google Scholar 

  32. Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)

    Article  Google Scholar 

  33. Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 99(3), 129–144 (2002)

    Article  MathSciNet  Google Scholar 

  34. Sarto, M.S., Tamburrano, A.: Single-conductor transmission-line model of multiwall carbon nanotubes. IEEE Trans. Nanotechnol. 9(1), 82–92 (2010)

    Article  Google Scholar 

  35. D’Amore, M., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)

    Article  Google Scholar 

  36. Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54(1), 133–139 (2012)

    Article  Google Scholar 

  37. Naeemi, A., Meindl, J.D.: Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Dev. Lett. 27(5), 338–340 (2006)

    Article  Google Scholar 

  38. Naeemi, A., Meindl, J.D.: Physical modeling of temperature coefficient of resistance for single-and multi-wall carbon nanotube interconnects. IEEE Electron Dev. Lett. 28(2), 135–138 (2007)

    Article  Google Scholar 

  39. Naeemi, A., Meindl, J.D.: Performance modeling for single-and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Dev. 55(10), 2574–2582 (2008)

    Article  Google Scholar 

  40. Hanlon, L.R., Falardeau, E.R., Fischer, J.E.: Metallic reflectance of AsF5-graphite intercalation compounds. Solid State Commun. 24(5), 377–381 (1977)

    Article  Google Scholar 

  41. Chen, X., Lee, K.J., Akinwande, D., Close, G.F., Yasuda, S., Paul, B., Wong, H.S.P.: High-speed graphene interconnects monolithically integrated with CMOS ring oscillators operating at 1.3 GHz. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4. IEEE (2009)

  42. Katagiri, M., Miyazaki, H., Yamazaki, Y., Zhang, L., Matsumoto, T., Wada, M., Sakai, T.: Electrical properties of multilayer graphene interconnects prepared by chemical vapor deposition. In: 2013 IEEE International on Interconnect Technology Conference (IITC), pp. 1–3. IEEE (2013)

  43. International Technical Roadmap for Semiconductors (ITRS), 2013. [Online]. http://public.itrs.net

  44. Sharma, P., Kaur, I., Gupta, S., Singh, S.: Effect of temperature on the conductance of GNRFET. In: AIP Conference Proceedings, vol. 1724, No. 1, p. 020075. AIP Publishing (2016)

  45. Hwang, W.S., Zhao, P., Tahy, K., Nyakiti, L.O., Wheeler, V.D., Myers-Ward, R.L., Xing, H.: Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates. APL Mater. 3(1), 011101 (2015)

    Article  Google Scholar 

  46. Chen, Y.Y., Rogachev, A., Sangai, A., Iannaccone, G., Fiori, G., Chen, D.: A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1789–1794. EDA Consortium (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Kumar Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Rai, M.K. & Khanna, R. Effect of temperature on the performance analysis of MLGNR interconnects. J Comput Electron 18, 722–736 (2019). https://doi.org/10.1007/s10825-018-01297-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-01297-w

Keywords

Navigation