Skip to main content
Log in

An efficient method for subband calculations of cylindrical nanowire transistors using a Fourier harmonics expansion

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We propose an efficient method for subband calculations of cylindrical nanowire transistors with an arbitrary channel orientation. To perform the subband calculation efficiently, the wavefunctions are expanded using Fourier harmonics. It is confirmed that the use of an approximate isotropic effective mass introduces an error in the subband calculation due to the incorrectly calculated potential energy. A comparison with the results obtained in the Cartesian coordinate system confirms the accuracy of our method. Moreover, the simulation time required to obtain the self-consistent solution is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang, L., Tang, S., King, T.-J., Bokor, J., Hu, C.: Gate length scaling and threshold voltage control of double-gate MOSFETs. In: International Electron Devices Meeting, pp. 719-722 (2000)

  2. Hisamoto, D., Lee, W.-C., Kedzierski, J., Anderson, E., Takeuchi, H., Asano, K., King, T.-J., Bokor, J., Hu, C.: A folded-channel MOSFET for deep-sub-tenth micron era. In: International Electron Devices Meeting, pp. 1032–1034 (1998)

  3. Yu, B., Chang, L., Ahmed, S., Wang, H., Bell, S., Yang, C.Y., Tabery, C., Ho, C., Xiang, Q., King, T.-J. et al.: FinFET scaling to 10 nm gate length. In: International Electron Devices Meeting, pp. 251–254 (2002)

  4. Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices 55, 2859–2876 (2008)

    Article  Google Scholar 

  5. Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., et al.: Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Symposium on VLSI Technology, pp. T230–T231 (2017)

  6. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  Google Scholar 

  7. Gnani, E., Reggiani, S., Grudi, A., Parruccini, P., Colle, R., Rudan, M., Baccarani, G.: Band-structure effects in ultrascaled silicon nanowires. IEEE Trans. Electron Devices 54, 2243–2254 (2007)

    Article  Google Scholar 

  8. Jin, S., Fischetti, M.V., Tang, T.-W.: Theoretical study of carrier transport in silicon nanowire transistors based on the multisubband Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2886–2897 (2008)

    Article  Google Scholar 

  9. Lenzi, L., Palestri, P., Gnani, E., Reggiani, S., Grudi, A., Esseni, D., Selmi, L., Baccarani, G.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2086–2096 (2008)

    Article  Google Scholar 

  10. Sore, B., Magnus, W., Vandenberghe, W.: Low-field mobility in ultrathin silicon nanowire junctionless transistors. Appl. Phys. Lett. 99, 233509 (2011)

    Article  Google Scholar 

  11. Lee, Y., Kakushima, K., Natori, K., Iwai, H.: Gate capacitance modeling and diameter-dependent performance of nanowire MOSFETs. IEEE Trans. Electron Devices 59, 1037–1045 (2012)

    Article  Google Scholar 

  12. Paussa, A., Conzatti, F., Breda, D., Vermiglio, R., Esseni, D., Palestri, P.: Pseudospectral methods for the efficient simulation of quantization effects in nanoscale MOS transistors. IEEE Trans. Electron Devices 57, 3239–3249 (2010)

    Article  Google Scholar 

  13. Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18, 255201 (2007)

    Article  Google Scholar 

  14. Pham, A.-T., Meinerzhagen, B., Jungemann, C.: A fast solver for hole inversion layers with an efficient 2D-space discretization. J. Comput. Electron. 7, 99–102 (2008)

    Article  Google Scholar 

  15. Hong, S.M., Pham, A.T., Jungemann, C.: Deterministic solvers for the Boltzmann transport equation. Springer (2011)

  16. Sentaurus Device Monte Carlo User Guide, Version O-2018.06, Synopsys, Mountain View, 2018

  17. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  18. Davis, T.A.: Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liseikin, V.D.: Grid Generation Methods. Scientific Computation. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048277). It was also supported by GIST Research Institute (GRI) grant funded by the GIST in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, GT., Hong, SM. An efficient method for subband calculations of cylindrical nanowire transistors using a Fourier harmonics expansion. J Comput Electron 18, 447–452 (2019). https://doi.org/10.1007/s10825-018-01296-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-01296-x

Keywords

Navigation