Skip to main content
Log in

Simulation and comparative analysis of the DC characteristics of submicron GaN HEMTs for use in CAD software

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Bearing in mind the requirements of design engineers, a nonlinear model is developed to simulate the temperature-dependent IV characteristics of submicron high-electron-mobility transistors (HEMTs). Self- and ambient heating effects are incorporated into the model expression to cater for both the negative and positive conductance of the device, after the onset of the saturation current. It is shown that the accuracy of numerical models previously developed for metal–semiconductor field-effect transistors (MESFETs) deteriorates when simulating the IV characteristics of gallium nitride (GaN) HEMTs, primarily due to the self-heating effects. The validity of the proposed model is checked for GaN HEMTs with gate length (\(L_\mathrm{g}\)) ranging from 0.12 to 0.7 \(\upmu \hbox {m}\) in the temperature range of \(T=298\) to \(T=773\) K. It is demonstrated that the proposed model simulates, with a good degree of accuracy, the output characteristics of such devices exhibiting negative conductance in the saturation region of operation. It is observed that, for devices exhibiting negative conductance in the saturation region, the peak transconductance (\(g_\mathrm{m}\)) occurs at a relatively higher negative gate bias while the peak value reduces with increasing ambient temperature. The root-mean-square errors reveal that the proposed model is better than other similar models reported in the literature, with an improvement varying from 17 to 50 % depending on the device characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hudgins, J.L., Simin, G.S., Santi, E., Khan, M.A.: An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18(3), 907–914 (2003)

    Article  Google Scholar 

  2. Saremi, M., Hathwar, R., Dutta, M., Koeck, F.A., Nemanich, R.J., Chowdhury, S., Goodnick, S.M.: Analysis of the reverse IV characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111(4), 043507 (2017)

    Article  Google Scholar 

  3. Saremi, M.: Modeling and simulation of the programmable metallization cells (PMCs) and diamond-based power devices. Ph.D. Dissertation, Arizona State University (2017)

  4. Holmes, J., Dutta, M., Koeck, F.A., Benipal, M., Brown, J., Fox, B., Hathwar, R., Johnson, H., Malakoutian, M., Saremi, M., et al.: A 4.5 \(\mu \text{m}\) PIN diamond diode for detecting slow neutrons. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903, 297–301 (2018)

    Article  Google Scholar 

  5. Shenai, K., Scott, R.S., Baliga, B.J.: Optimum semiconductors for high-power electronics. IEEE Trans. Electron Devices 36(9), 1811–1823 (1989)

    Article  Google Scholar 

  6. Millan, J., Godignon, P., Perpina, X., Pérez-Tomás, A., Rebollo, J.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)

    Article  Google Scholar 

  7. Rehman, S., Ahmed, M., Rafique, U., Khan, M.: A nonlinear model to assess DC/AC performance reliability of submicron SiC MESFETs. J. Comput. Electron. 17, 1199–1209 (2018)

    Article  Google Scholar 

  8. Ahmed, M.M.: Effects of sintering on Au/Ti/GaAs Schottky barrier submicron metal-semiconductor field-effect transistors characteristics. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 16(4), 2034–2037 (1998)

    Article  Google Scholar 

  9. Khan, A.B., Sharma, M., Siddiqui, M., Anjum, S.: Performance analysis of AC and DC characteristics of AlGaN/GaN HEMT at various temperatures. Trans. Electr. Electron. Mater. 19, 1–6 (2018)

    Article  Google Scholar 

  10. Batarseh, I., Harb, A.: Review of switching concepts and power semiconductor devices. In: Power Electronics, Springer, pp. 25–91 (2018)

  11. Shen, Z.J., Sabui, G., Miao, Z., Shuai, Z.: Wide-bandgap solid-state circuit breakers for DC power systems: device and circuit considerations. IEEE Trans. Electron Devices 62(2), 294–300 (2015)

    Article  Google Scholar 

  12. Khan, M.A., Bhattarai, A., Kuznia, J., Olson, D.: High electron mobility transistor based on a GaN-\(\text{ Al }_x\text{ Ga }_{1-x}\text{ N}\) heterojunction. Appl. Phys. Lett. 63(9), 1214–1215 (1993)

    Article  Google Scholar 

  13. Baliga, B.J.: Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)

    Article  Google Scholar 

  14. Johnson, J., Piner, E., Vescan, A., Therrien, R., Rajagopal, P., Roberts, J., Brown, J., Singhal, S., Linthicum, K.: 12 W/mm AlGaN-GaN HFETs on silicon substrates. IEEE Electron Device Lett. 25(7), 459–461 (2004)

    Article  Google Scholar 

  15. Ducatteau, D., Minko, A., Hoel, V., Morvan, E., Delos, E., Grimbert, B., Lahreche, H., Bove, P., Gaquiere, C., De Jaeger, J., et al.: Output power density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate. IEEE Electron Device Lett. 27(1), 7–9 (2006)

    Article  Google Scholar 

  16. Marti, D., Tirelli, S., Alt, A.R., Roberts, J., Bolognesi, C.: 150-GHz cutoff frequencies and 2-W/mm output power at 40 GHz in a millimeter-wave AlGaN/GaN HEMT technology on silicon. IEEE Electron Device Lett. 33(10), 1372–1374 (2012)

    Article  Google Scholar 

  17. Ma, K., He, N., Liserre, M., Blaabjerg, F.: Frequency-domain thermal modeling and characterization of power semiconductor devices. IEEE Trans. Power Electron. 31(10), 7183–7193 (2016)

    Article  Google Scholar 

  18. Sun, R., Liang, Y.C., Yeo, Y.-C., Wang, Y.-H., Zhao, C.: Design of power integrated circuits in full AlGaN/GaN MIS-HEMT configuration for power conversion. Phys. Status Solidi (a) 214(3), 1600562 (2017)

    Article  Google Scholar 

  19. Martin-Horcajo, S., Wang, A., Romero, M., Tadjer, M., Koehler, A., Anderson, T., Calle, F.: Impact of device geometry at different ambient temperatures on the self-heating of GaN-based HEMTs. Semicond. Sci. Technol. 29(11), 115013 (2014)

    Article  Google Scholar 

  20. Alim, M.A., Rezazadeh, A.A., Gaquiere, C.: Thermal characterization of DC and small-signal parameters of 150 nm and 250 nm gate-length AlGaN/GaN HEMTs grown on a SiC substrate. Semicond. Sci. Technol. 30(12), 125005 (2015)

    Article  Google Scholar 

  21. Mantooth, H.A., Peng, K., Santi, E., Hudgins, J.L.: Modeling of wide bandgap power semiconductor devices—part I. IEEE Trans. Electron Devices 62(2), 423–433 (2015)

    Article  Google Scholar 

  22. Santi, E., Peng, K., Mantooth, H.A., Hudgins, J.L.: Modeling of wide-bandgap power semiconductor devices—part II. IEEE Trans. Electron Devices 62(2), 434–442 (2015)

    Article  Google Scholar 

  23. Angelov, I., Rorsman, N., Stenarson, J., Garcia, M., Zirath, H.: An empirical table-based FET model. IEEE Trans. Microw. Theory Tech. 47(12), 2350–2357 (1999)

    Article  Google Scholar 

  24. Curtice, W.R., Ettenberg, M.: A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microw. Theory Tech. 33(12), 1383–1394 (1985)

    Article  Google Scholar 

  25. McCamant, A.J., McCormack, G.D., Smith, D.H.: An improved GaAs MESFET model for SPICE. IEEE Trans. Microw. Theory Tech. 38(6), 822–824 (1990)

    Article  Google Scholar 

  26. Dobes, J.: Using modified GaAs FET model function for the accurate representation of PHEMTS and varactors. In: Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean, vol. 1, IEEE, pp. 35–38 (2004)

  27. Islam, M., Zaman, M.: A seven-parameter nonlinear I-V characteristics model for sub-\(\mu \text{m}\) range GaAs MESFETs. Solid State Electron. 48(7), 1111–1117 (2004)

    Article  Google Scholar 

  28. Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)

    Article  Google Scholar 

  29. Cheng, X., Li, M., Wang, Y.: An analytical model for current-voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect. Solid State Electron. 54(1), 42–47 (2010)

    Article  Google Scholar 

  30. Rodríguez, R., González, B., García, J., Yigletu, F.M., Tirado, J.M., Iñiguez, B., Nunez, A.: Numerical simulation and compact modelling of AlGaN/GaN HEMTs with mitigation of self-heating effects by substrate materials. Phys. Status Solidi (a) 212(5), 1130–1136 (2015)

    Article  Google Scholar 

  31. Jena, K., Swain, R., Lenka, T.R.: Modeling and comparative analysis of DC characteristics of AlGaN/GaN HEMT and MOSHEMT devices. Int. J. Numer. Model. Electron. Netw. Devices Fields 29(1), 83–92 (2016)

    Article  Google Scholar 

  32. Muhea, W.E., Yigletu, F.M., Cabré-Rodon, R., Iñiguez, B.: Analytical model for Schottky Barrier height and threshold voltage of AlGaN/GaN HEMTs with piezoelectric effect. IEEE Trans. Electron Devices 65(3), 901–907 (2018)

    Article  Google Scholar 

  33. Neamen, D.A., et al.: Semiconductor Physics and Devices, 3rd edn. McGraw-Hill, New York (1997)

    Google Scholar 

  34. Khan, M., Ahmed, U., Ahmed, M., Rehman, S.: An improved model to assess temperature-dependent DC characteristics of submicron GaN HEMTs. J. Comput. Electron. 17(2), 653–662 (2018)

    Article  Google Scholar 

  35. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M.A., Shur, M.S.: High-temperature performance of AlGaN/GaN HFETs on SiC substrates. IEEE Electron. Device Lett. 18(10), 492–494 (1997)

    Article  Google Scholar 

  36. Arulkumaran, S., Ng, G.I., Vicknesh, S., Wang, H., Ang, K.S., Tan, J.P.Y., Lin, V.K., Todd, S., Lo, G.-Q., Tripathy, S.: Direct current and microwave characteristics of sub-micron AlGaN/GaN high-electron-mobility transistors on 8-in. Si (111) substrate. Jpn. J. Appl. Phys. 51(11R), 111001 (2012)

    Article  Google Scholar 

  37. Yigletu, F.M., Khandelwal, S., Fjeldly, T.A., Iñiguez, B.: Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60(11), 3746–3752 (2013)

    Article  Google Scholar 

  38. Ahmed, M.M.: Abrupt negative differential resistance in ungated GaAs FET’s. IEEE Trans. Electron Devices 44(11), 2031–2033 (1997)

    Article  Google Scholar 

  39. Tan, W., Uren, M., Fry, P., Houston, P., Balmer, R., Martin, T.: High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid State Electron. 50(3), 511–513 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Ahmed, U.F., Ahmed, M.M. et al. Simulation and comparative analysis of the DC characteristics of submicron GaN HEMTs for use in CAD software. J Comput Electron 18, 482–491 (2019). https://doi.org/10.1007/s10825-018-01292-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-01292-1

Keywords

Navigation