Skip to main content
Log in

FDTD algorithm to achieve absolute stability in performance analysis of SWCNT interconnects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Crosstalk analysis in very-large-scale (VLSI) interconnects is usually carried out using finite-difference time-domain (FDTD) methods. However, the stability of FDTD is limited by the Courant–Friedrichs–Lewy (CFL) stability criteria. In this work, we propose an innovative FDTD algorithm to overcome the stability limitations due to the CFL criteria and make the analysis absolutely stable for all times. Using the proposed FDTD method, we analyze the response of coupled interconnects for symmetric and asymmetric inputs with both in-phase and out-of-phase switching. We further analyzed the functional switching and determined how to reduce noise peaks due to crosstalk. For all responses, we compared our new algorithm with HSPICE results, revealing greatly enhanced accuracy and central processing unit (CPU) runtime compared with conventional FDTD. Finally, relative and absolute stability analyses of the proposed FDTD method were carried out using Nyquist and Routh–Hurwitz (R–H) criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002)

    Article  Google Scholar 

  2. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Topics in Applied Physics, Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  3. Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)

    Article  Google Scholar 

  4. Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54(1), 133–139 (2012)

    Article  Google Scholar 

  5. Li, X., Mao, J., Swaminathan, M.: Transient analysis of CMOS-gate driven RLGC interconnects based on FDTD. IEEE Trans. CAD Integr. Circuits Syst. 30(4), 574–583 (2011)

    Article  Google Scholar 

  6. Kumar, V.R., Kaushik, B.K., Patnaik, A.: Improved crosstalk noise modeling of MWCNT interconnects using FDTD technique. Microelectr. J. 46(12), 1263–1268 (2015)

    Article  Google Scholar 

  7. Orlandi, A., Paul, C.R.: FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads. IEEE Trans. Electromagn. Compat. 38(3), 388–399 (1996)

    Article  Google Scholar 

  8. Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microw. Theory Tech. 47(10), 2003–2007 (1999)

    Article  Google Scholar 

  9. Kumar, V.R., Kaushik, B.K., Patnaik, A.: An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 5(12), 1810–1817 (2015)

    Article  Google Scholar 

  10. Nishad, A.K., Sharma, R.: Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion. IEEE Trans. Emerg. Top. Comput. 3(4), 470–482 (2015)

    Article  Google Scholar 

  11. Ahmed, I., Chua, E.K., Li, E.P., Chen, Z.: Development of the three-dimensional unconditionally stable LOD-FDTD method. IEEE Trans. Antennas Propag. 56(11), 3596–3600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun, C., Trueman, C.W.: Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations. Electron. Lett. 39(7), 595–597 (2003)

    Article  Google Scholar 

  13. Afrooz, K.: Time domain analysis of field effect transistors using unconditionally stable finite difference method. IET Sci. Measur. Technol. 10(7), 686–692 (2016)

    Article  Google Scholar 

  14. Kumar, V.R., Majumder, M.K., Alam, A., Kukkam, N.R., Kaushik, B.K.: Stability and delay analysis of multi-layered GNR and multi-walled CNT Interconnects. J. Comput. Electron. 14(2), 611–618 (2015)

    Article  Google Scholar 

  15. Dhiman, R., Chandel, R.: Delay analysis of buffer insertion sub-threshold interconnects. Analog Integr. Circuits Sig. Process. (2016). https://doi.org/10.1007/s10470-016-0860-8

    Google Scholar 

  16. Rai, M.K., Kaushik, B.K., Sarkar, S.: Thermally aware performance analysis of single-walled carbon nanotube bundle as VLSI interconnects. J. Comput. Electron. 15(2), 407 (2016)

    Article  Google Scholar 

  17. Das, D., Rahaman, H.: Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans. Nanotechnol. 10(6), 1362–1370 (2011)

    Article  Google Scholar 

  18. Burke, P.J.: An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2(1), 55–58 (2003)

    Article  Google Scholar 

  19. Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007)

    Article  Google Scholar 

  20. Kim, W., Javey, A., Tu, R., Cao, J., Wang, Q., Dai, H.: Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101-1–173101-3 (2005)

    Google Scholar 

  21. Srivastava, A., Xu, Y., Sharma, A.K.: Carbon nanotubes for next generation very large scale integration interconnects. J. Nanophoton. 4(1), 1–26 (2010)

    Article  Google Scholar 

  22. Kantartzis, N.V., Tsiboukis, T.D.: Modern EMC Analysis Techniques: Time-Domain Computational Schemes, vol. 1, 1st edn, pp. 1–224. Morgan & Claypool, San Rafael (2008)

    Google Scholar 

  23. Corradini, L., Maksimovic, D., Mattavelli, P., Zane, R.: Digital Control in Digital Control of High-Frequency Switched-Mode Power Converters, vol. 1, pp. 360–370. Wiley-IEEE Press, New York (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Venkataiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataiah, C., Satyaprasad, K. & Prasad, T.J. FDTD algorithm to achieve absolute stability in performance analysis of SWCNT interconnects. J Comput Electron 17, 540–550 (2018). https://doi.org/10.1007/s10825-017-1125-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1125-1

Keywords

Navigation