Skip to main content
Log in

Three-dimensional optimal multi-level Monte–Carlo approximation of the stochastic drift–diffusion–Poisson system in nanoscale devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The three-dimensional stochastic drift–diffusion–Poisson system is used to model charge transport through nanoscale devices in a random environment. Applications include nanoscale transistors and sensors such as nanowire field-effect bio- and gas sensors. Variations between the devices and uncertainty in the response of the devices arise from the random distributions of dopant atoms, from the diffusion of target molecules near the sensor surface, and from the stochastic association and dissociation processes at the sensor surface. Furthermore, we couple the system of stochastic partial differential equations to a random-walk-based model for the association and dissociation of target molecules. In order to make the computational effort tractable, an optimal multi-level Monte–Carlo method is applied to three-dimensional solutions of the deterministic system. The whole algorithm is optimal in the sense that the total computational cost is minimized for prescribed total errors. This comprehensive and efficient model makes it possible to study the effect of design parameters such as applied voltages and the geometry of the devices on the expected value of the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)

    Article  Google Scholar 

  2. Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010)

    Article  Google Scholar 

  3. Tulzer, G., Heitzinger, C.: Fluctuations due to association and dissociation processes at nanowire-biosensor surfaces and their optimal design. Nanotechnology 26(2), 025502/1–9 (2015). https://doi.org/10.1088/0957-4484/26/2/025502

    Article  Google Scholar 

  4. Tulzer, G., Heitzinger, C.: Brownian-motion based simulation of stochastic reaction–diffusion systems for affinity based sensors. Nanotechnology 27(16), 165501/1–9 (2016). https://doi.org/10.1088/0957-4484/27/16/165501

    Article  Google Scholar 

  5. Heitzinger, C., Mauser, N.J., Ringhofer, C.: Multiscale modeling of planar and nanowire field-effect biosensors. SIAM J. Appl. Math. 70(5), 1634–1654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baumgartner, S., Heitzinger, C.: Existence and local uniqueness for 3D self-consistent multiscale models for field-effect sensors. Commun. Math. Sci 10(2), 693–716 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heitzinger, C., Ringhofer, C.: Multiscale modeling of fluctuations in stochastic elliptic PDE models of nanosensors. Commun. Math. Sci. 12(3), 401–421 (2014). https://doi.org/10.4310/CMS.2014.v12.n3.a1

    Article  MathSciNet  MATH  Google Scholar 

  8. Khodadadian, A., Hosseini, K., Manzour ol Ajdad, A., Hedayati, M., Kalantarinejad, R., Heitzinger, C.: Optimal design of nanowire field-effect troponin sensors. Comput. Biol. Med. 87, 46–56 (2017)

    Article  Google Scholar 

  9. Roy, G., Brown, A.R., Adamu-Lema, F., Roy, S., Asenov, A.: Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs. IEEE Trans. Electron Devices 53(12), 3063–3070 (2006)

  10. Seoane, N., Martinez, A., Brown, A.R., Barker, J.R., Asenov, A.: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: a fully 3-D NEGF simulation study. IEEE Trans. Electron Devices 56(7), 1388–1395 (2009)

    Article  Google Scholar 

  11. Taghizadeh, L., Khodadadian, A., Heitzinger, C.: The optimal multilevel Monte–Carlo approximation of the stochastic drift–diffusion–Poisson system. Comput. Methods Appl. Mech. Eng. 318, 739–761 (2017). https://doi.org/10.1016/j.cma.2017.02.014

    Article  MathSciNet  Google Scholar 

  12. Khodadadian, A., Taghizadeh, L., Heitzinger, C.: Optimal multilevel randomized quasi-Monte-Carlo method for the stochastic drift-diffusion-Poisson system. Comput. Methods Appl. Mech. Eng. 329, 480–497 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted korobov and sobolev spaces. J. Complex. 19(3), 301–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heitzinger, C., Taghizadeh, L.: Existence and local uniqueness for the stochastic drift–diffusion–Poisson system. (Submitted for publication)

  15. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)

    Book  MATH  Google Scholar 

  16. Sano, N., Matsuzawa, K., Mukai, M., Nakayama, N.: On discrete random dopant modeling in drift–diffusion simulations: physical meaning of atomistic dopants. Microelectron. Reliab. 42(2), 189–199 (2002)

    Article  Google Scholar 

  17. Jiang, X.-W., Deng, H.-X., Luo, J.-W., Li, S.-S., Wang, L.-W.: A fully three-dimensional atomistic quantum mechanical study on random dopant-induced effects in 25-nm MOSFETs. IEEE Trans. Electron Devices 55(7), 1720–1726 (2008)

    Article  Google Scholar 

  18. Chen, D., Wei, G.-W.: Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. J. Comput. Phys. 229(12), 4431–4460 (2010)

    Article  MATH  Google Scholar 

  19. Khodadadian, A., Heitzinger, C.: Basis adaptation for the stochastic nonlinear Poisson–Boltzmann equation. J. Comput. Electron. 15(4), 1393–1406 (2016)

    Article  Google Scholar 

  20. Patolsky, F., Lieber, C.M.: Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005)

    Article  Google Scholar 

  21. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baumgartner, S., Heitzinger, C., Vacic, A., Reed, M.A.: Predictive simulations and optimization of nanowire field-effect PSA sensors including screening. Nanotechnology 24(22), 225503/1–9 (2013). https://doi.org/10.1088/0957-4484/24/22/225503

    Article  Google Scholar 

  24. Colinge, J.-P., et al.: FinFETs and Other Multi-Gate Transistors. Springer, Berlin (2008)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by FWF (Austrian Science Fund) START Project No. Y660 PDE Models for Nanotechnology. The authors also acknowledge discussions with Gerhard Tulzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirreza Khodadadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadian, A., Taghizadeh, L. & Heitzinger, C. Three-dimensional optimal multi-level Monte–Carlo approximation of the stochastic drift–diffusion–Poisson system in nanoscale devices. J Comput Electron 17, 76–89 (2018). https://doi.org/10.1007/s10825-017-1118-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1118-0

Keywords

Navigation