Skip to main content

Relativistic Wigner functions in transition metal dichalcogenides


The Wigner function has been proven useful in many studies of transport as well as quantum coherence in experimental situations. When we deal with Dirac bands, this function becomes a matrix function. Here, we study the Wigner matrix for a situation in a transition metal dichacogenides with a dominant spin–orbit interaction. Here, we discuss \(\hbox {WS}_{2}\), where the bands can be described with the Dirac equation, and a unique spin-valley coupling arises. This leads to a 2X2 Wigner matrix for either the conduction band or the valence band. The off-diagonal elements display interference phenomena from the two diagonal components.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  MATH  Google Scholar 

  2. 2.

    Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Levinson, I.B.: Translational invariance in uniform fields and the equation for the density matrix in the Wigner representation. Zh. Eksp. Teor. Fiz. 57, 660 (1969) [Sov. Phys. JETP 30, 362 (1970)]

  4. 4.

    Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Schwaha, P.: Physical scales in the Wigner–Boltzmann equation. Ann. Phys. 328, 220 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Brodier, O., Ozorio de Almeida, A.M.: Markovian evolution of Gaussian states in the semiclassical limit. Phys. Lett. A 374, 2315 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Carvalho, A.R.R., Kenfack, A., Toscano, F., Rost, J.M., Ozorio de Almeida, A.M.: Gaussian representation of extended quantum states. Phys. Lett. A 376, 19 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Schmidt, R., Stockburger, J.T., Ankerhold, J.: Almost local generation of Einstein–Podolsky–Rosen entanglement in nonequilibrium open systems. Phys. Rev. A 88, 052321 (2013)

    Article  Google Scholar 

  8. 8.

    Douce, T., Eckstein, A., Walborn, S.P., Khoury, A.Z., Ducci, S., Keller, A., Coudreau, T., Milman, P.: Direct measurement of the biphoton Wigner function through two-photon interference. Sci. Rep. 3, 3530 (2013)

    Article  Google Scholar 

  9. 9.

    Wickles, C., Belzig, W.: Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure. Phys. Rev. B 88, 045308 (2013)

    Article  Google Scholar 

  10. 10.

    Banerji, A., Singh, R.P., Bandyopadhyay, A.: Entanglement measure using Wigner function: case of generalized vortex state formed by multiphoton subtraction. Opt. Commun. 330, 85 (2014)

    Article  Google Scholar 

  11. 11.

    Zhang, H.-L., Hu, Y.-Q., Jia, F., Hu, L.-Y.: Entanglement of photon-subtracted two-mode squeezed thermal state and its decoherence in thermal environments. Int. J. Theor. Phys. 53, 2091 (2014)

    Article  MATH  Google Scholar 

  12. 12.

    McConnell, R., Zhang, H., Hu, J., Cuk, S., Vuletic, V.: Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439 (2015)

    Article  Google Scholar 

  13. 13.

    Birrittella, R., Cheng, K., Gerry, C.C.: Photon-number parity oscillations in the resonant Jaynes–Cummings model. Opt. Commun. 354, 286 (2015)

    Article  Google Scholar 

  14. 14.

    Prabhakar, S., Reddy, S.G., Perumangatt, C., Samanta, G.K., Singh, R.P.: Violation of Bell’s inequality for phase-singular beams. Phys. Rev. A 92, 023822 (2015)

    Article  Google Scholar 

  15. 15.

    Reboiro, M., Civitarese, O., Tielas, D.: Use of discrete Wigner functions in the study of decoherence of a system of superconducting qubits. Phys. Scr. 90, 074028 (2015)

    Article  Google Scholar 

  16. 16.

    Seshadreesan, K.P., Dowling, J.P., Agarwal, G.S.: Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states. Phys. Scr. 90, 074029 (2015)

    Article  Google Scholar 

  17. 17.

    Klucksdahl, N.C., Kriman, A.C., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)

    Article  Google Scholar 

  18. 18.

    Nedjalkov, M., Kosina, H., Kosik, R., Selberherr, S.: A Wigner equation with electron–phonon interaction. Microelectron. Eng. 63, 199 (2002)

    Article  Google Scholar 

  19. 19.

    Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Dev. 50, 769 (2003)

    Article  Google Scholar 

  20. 20.

    Querlioz, D., Saint-Martin, J., Huet, K., Bournel, A., Aubry-Fortuna, V., Chassat, C., Galdin-Retaileau, S., Dollfus, P.: On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Trans. Electron Devices 54, 2232 (2007)

    Article  Google Scholar 

  21. 21.

    Fonarev, O.A.: Wigner function and quantum kinetic theory in curved space–time and external fields. J. Math. Phys. 35, 2105 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Naudts, J.: Off-shell relativistic quantum mechanics and formulation of Dirac’s equation using characteristic matrices. Int. J. Theor. Phys. 38, 431 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Yuan, Y., Li, K., Wang, J.H., Ma, K.: The Wigner functions for a spin-1/2 relativistic particle in the presence of magnetic field. Int. J. Theor. Phys. 49, 1993 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Zamponi, N., Barletti, L.: Quantum electronic transport in graphene: a kinetic and fluid-dynamic approach. Math. Meth. Appl. Sci. 34, 807 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Ma, K., Wang, J.-H., Yuan, Y.: Wigner function for the Dirac oscillator in spiunor space. Chin. Phys. 35, 11 (2011)

    Article  Google Scholar 

  26. 26.

    Fürst, M.L.R., Kotulla, M., Mendl, C.B., Spohn, H.: Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime. J. Phys. A Math. Theor. 48, 095204 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Cabrera, R., Campos, A.G., Bonder, D.I., Rabitz, H.A.: Dirac open-quantum-system dynamics: formulations and simulations. Phys. Rev. A 94, 052111 (2016)

    Article  Google Scholar 

  28. 28.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS\(_{2}\) and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Article  Google Scholar 

  29. 29.

    Lebègue, S., Eriksson, O.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)

    Article  Google Scholar 

  30. 30.

    Zhao, W., Ribeiro, R.M., Eda, G.: Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48, 91 (2015)

    Article  Google Scholar 

  31. 31.

    Li, S.-L., Tsukagoshi, K., Orgiu, E., Samori, P.: Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118 (2016)

    Article  Google Scholar 

  32. 32.

    Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W.: Phonon-limited mobility in n-type single-layer MoS\(_{2}\) from first principles. Phys. Rev. B 85, 115317 (2012)

    Article  Google Scholar 

  33. 33.

    Sinova, J., Culcer, C., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    Article  Google Scholar 

  34. 34.

    Moca, C.P., Marinescu, D.C.: Finite-size effects in a two-dimensional electron gas with Rashba spin–orbit interaction. Phys. Rev. B 75, 035325 (2007)

    Article  Google Scholar 

  35. 35.

    Nikolic, B.K., Souma, S., Zarbo, L.B., Sinova, J.: Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures. Phys. Rev. Lett. 95, 046601 (2005)

    Article  Google Scholar 

  36. 36.

    Kormányos, A., Burkard, G., Gmitra, M., Fabian, J., Zólyomi, V., Drummond, N.D., Fal’ko, V.: k\(\cdot \)p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015)

    Article  Google Scholar 

  37. 37.

    Junwirth, T., Niu, Q., MacDonald, A.H.: Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002)

    Article  Google Scholar 

  38. 38.

    D’yakonov, M.I., Perel’, V.I.: Possibility of orienting electron spins with current. JETP Lett. 13, 467 (1971)

    Google Scholar 

  39. 39.

    Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999)

    Article  Google Scholar 

  40. 40.

    Xiao, D., Yao, W., Niu, Q.: Valley contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007)

    Article  Google Scholar 

  41. 41.

    Jacob, J., Meier, G., Peters, S., Matsuyama, T., Merkt, U., Cummings, A.W., Akis, R., Ferry, D.K.: Generation of highly spin-polarized currents in cascaded InAs spin filters. J. Appl. Phys. 105, 093714 (2009)

    Article  Google Scholar 

  42. 42.

    Johnson, M.: Spintronics. J. Phys. Chem. B 109, 14278 (2005)

    Article  Google Scholar 

  43. 43.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010)

    Article  Google Scholar 

  44. 44.

    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  Google Scholar 

  45. 45.

    Ferry, D.K.: The onset of quantization in ultra-submicron semiconductor devices. Superlattices Microstr. 27, 61 (2000)

    Article  Google Scholar 

  46. 46.

    Ferry, D.K.: Phase-space functions: Can they give a different view of quantum mechanics? J. Comp. Electron. 14, 864 (2015)

    Article  Google Scholar 

  47. 47.

    Miranowicz, A., Bajer, J., Lambert, N., Liu, Y.-X., Nori, F.: Tunable multiphonon blockade in coupled harmonic oscillators. Phys. Rev. A 93, 013808 (2016)

    Article  Google Scholar 

  48. 48.

    Praxmeyer, L., Chen, C.-C., Yang, P., Yang, S.-D., Lee, R.-K.: Direct measurement of time-frequency analogs of sub-Planck structures. Phys. Rev. A 93, 053835 (2016)

    Article  Google Scholar 

  49. 49.

    Zhai, F., Lu, J.: General relation between the group delay and dwell time in multicomponent electron systems. Phys. Rev. B 94, 165426 (2016)

    Article  Google Scholar 

  50. 50.

    Kienzler, D., Flühmann, C., Negnevitsky, V., Lo, H.-Y., Marinelli, M., Nadlinger, D., Home, J.P.: Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016)

    Article  Google Scholar 

  51. 51.

    Yashiki, S.: Theoretical analysis of controllability of interference phenomena between partially coherent fields in the intensity matrix theory. Jpn. J. Appl. Phys. 55, 092501 (2016)

    Article  Google Scholar 

  52. 52.

    Lv, D., An, S., Um, M., Zhang, J., Zhang, J.-N., Kim, M.S., Kim, K.: Reconstruction of the Jaynes–Cummings field state of ionic motion in a harmonic trap. Phys. Rev. A 95, 043813 (2017)

    Article  Google Scholar 

  53. 53.

    Zapletal, P., Filip, R.: Multi-copy quantifiers for single-photon states. Sci. Rep. 7, 1484 (2017)

    Article  Google Scholar 

  54. 54.

    Gevorkyan, S.T., Gevorkyan, M.S.: Quantum dynamics of intracavity third-subharmonic generation. Opt. Spectrosc. 122, 784 (2017)

    Article  Google Scholar 

  55. 55.

    Guo, L., Han, S.S., Hu, S.L., Chen, J.: Time-energy analysis of above-threshold ionization in the transverse direction of the linearly polarized laser pulses. J. Phys. B 50, 125006 (2017)

    Article  Google Scholar 

  56. 56.

    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  57. 57.

    Artacho, E., del Bosch, L.M.: Nonorthogonal basis sets in quantum mechanics: representations and second quantization. Phys. Rev. A 43, 5770 (1991)

    Article  Google Scholar 

  58. 58.

    Chambers, R.G.: The kinetic formulation of conduction problems. Proc. Phys. Soc. Lond. A65, 458 (1952)

    Article  MATH  Google Scholar 

  59. 59.

    Chambers, R.G.: The conductivity of thin wires in a magnetic field. Proc. Roy Soc. Lond. A202, 378 (1950)

    MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Budd, H.: The generalized path variable method. J. Phys. Soc. Jpn. 18, 142 (1963)

    MathSciNet  Article  Google Scholar 

  61. 61.

    Budd, H.: Hot carriers and the path variable method. J. Phys. Soc. Jpn. 21 Suppl., 420 (1966)

    Google Scholar 

  62. 62.

    Rees, H.D.: Computer simulation of semiconductor devices. J. Phys. C Sol. State Phys. 6, 262 (1973)

    Article  Google Scholar 

  63. 63.

    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974) (Sec. 25)

  64. 64.

    Shockley, W.: Electron and Holes in Semiconductors. Van Nostrand, Princeton (1950) (Sec. 8.7)

  65. 65.

    Fröhlich, H., Paranjape, B.V.: Dielectri breakdown in solids. Proc. Phys. Soc. B 69, 21 (1956)

    Article  MATH  Google Scholar 

  66. 66.

    Ravaioli, U., Osman, M.A., Pötz, W., Kluksdahl, N., Ferry, D.K.: Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach. Physica 134B, 6 (1985)

    Google Scholar 

  67. 67.

    Shifren, L., Ferry, D.K.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 217 (2001)

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. K. Ferry.


Appendix A

Before delving into the distribution function itself, there are several important points about the quantum system that underlie the methods used here. It is fairly well known that the Dirac equation can be recast in the form of the Klein–Gordon equation. Whether we solve the Klein–Gordon equation or the Schrödinger equation itself, we are dealing with a linear differential equation which can be characterized with an arbitrary basis set and the exact set used is irrelevant. This basis set can be transformed into any other set by a similarity transformation [56]. Hence, we can use an arbitrary basis in which each state is localized at a point in space. This basis does not need to be orthonormal, as non-orthogonal basis sets have been known for quite some time [57]. A basis set of Gaussians is such a non-orthogonal basis, but represents a viable and common set widely used.

It is known that the Boltzmann or Wigner equation can be cast into a path integral form [58,59,60,61,62]. In the presence of a constant relaxation time, this formulation demonstrates that the distribution function retains its exact form from the initial time, which is a drifted distribution function [63]. Let us write the Wigner equation of motion, in a constant electric field, as

$$\begin{aligned} \left( {\frac{\partial }{\partial t}+\mathbf{v}\cdot \nabla +e\mathbf{E}\cdot \frac{\partial }{\partial \mathbf{p}}} \right) f(\mathbf{r},\mathbf{p},t)=-\frac{f-f_0 }{\tau }. \end{aligned}$$

Here, the motion is described in a six-dimensional phase space which is sufficient for the single particle Wigner function discussed here. The coordinate along a trajectory is taken to be s, from which it may be parameterized as [58, 60]

$$\begin{aligned} \mathbf{r}\rightarrow \mathbf{x}^{*}(s),\quad \mathbf{p}\rightarrow \mathbf{p}^{*}(s),\quad t\rightarrow s \end{aligned}$$

for which the partial derivatives are

$$\begin{aligned} \frac{\hbox {d}{} \mathbf{x}^{*}}{\hbox {d}s}=\mathbf{v},\quad \mathbf{x}^{*}(t)=\mathbf{r} \end{aligned}$$


$$\begin{aligned} \frac{\hbox {d}{} \mathbf{p}^{*}}{\hbox {d}s}=\hbox {e}{} \mathbf{E},\quad \mathbf{p}^{*}(t)=\mathbf{p}\quad . \end{aligned}$$

Now, (A1) can be written as

$$\begin{aligned} \frac{\hbox {d}f}{\hbox {d}s}=-\frac{f-f_0 }{\tau }, \end{aligned}$$

which has the trivial solution

$$\begin{aligned} f(s,~{\tau })~=~f_{0} . \end{aligned}$$

Hence, along the trajectories, the form of the distribution function is precisely that of the equilibrium distribution by modified by the parameters of the steady motion along the trajectories. This has a rich tradition in transport studies, as the “drifted,” or shifted, distribution [64]. It was well known already in the nineteenth century and has a rich history [63],[65]. The spatial variation of the distribution function can be described by the basis set chosen, so that a single Gaussian represents a typical example of the particle described by the distribution function [6]. That is, we describe a typical particle in terms of one of the basis set (the Gaussians) which moves in response to a balance between the applied fields and the dissipative forces represented by the relaxation time \(\tau \).

We choose to use a Gaussian packet because simulations of the equation of motion, whether from a discretized scheme [66] or from a particle Monte Carlo method [67], show that the Gaussian is observed to conserve its shape, just as the distribution is expected to do. We admit that this is only an observation. However, a rigorous proof has been given by Brodier and Ozorio de Almeida [5]. This latter proof holds for any quadratic Hamiltonian, such as our use of a constant, homogeneous electric field.

Appendix B

To begin, we write the integrand for the off-diagonal Wigner function as

$$\begin{aligned} I_{12} =\frac{1}{\pi \sigma ^{2}}\hbox {e}^{-\Lambda _x }e^{-\Lambda _y }q\quad . \end{aligned}$$

We note the x-velocities are the same for both terms, but this is not the case for the y-components, as indicated in (6). For the x-direction, the argument of the exponential becomes

$$\begin{aligned} \Lambda _x= & {} \frac{\left( {x-v_{1x} t+\frac{{x}'}{2}} \right) ^{2}+\left( {x-v_{2x} t-\frac{{x}'}{2}} \right) ^{2}}{4\sigma ^{2}} \nonumber \\&\quad -ik_x {x}'+ik_{1x} \left( {x+\frac{{x}'}{2}} \right) -ik_{2x} \left( {x-\frac{{x}'}{2}} \right) . \nonumber \\= & {} \frac{(x-v_{1x} t)^{2}}{2\sigma ^{2}}+\frac{{x}'^{2}}{8\sigma ^{2}}+i\left( {k_x -k_{1x} } \right) {x}' \end{aligned}$$

This result is the same as for the diagonal terms. The y-direction will be different, because of the oppositely directed velocities and wave numbers. The Gaussian parts are

$$\begin{aligned} \Lambda _y= & {} \frac{\left( {y-v_{1y} t+\frac{{y}'}{2}} \right) ^{2}+\left( {y-v_{2y} t-\frac{{y}'}{2}} \right) ^{2}}{4\sigma ^{2}} \nonumber \\&\quad -ik_y {y}'+ik_{1y} \left( {y+\frac{{y}'}{2}} \right) -ik_{2y} \left( {y-\frac{{y}'}{2}} \right) \nonumber \\= & {} \frac{\left( {y-v_{1y} t+\frac{{y}'}{2}} \right) ^{2}+\left( {y+v_{1y} t-\frac{{y}'}{2}} \right) ^{2}}{4\sigma ^{2}}\nonumber \\&\quad -ik_y {y}'+ik_{1y} \left( {y+\frac{{y}'}{2}} \right) +ik_{1y} \left( {y-\frac{{y}'}{2}} \right) \end{aligned}$$

We can expand the various terms and arrive at the final form

$$\begin{aligned} \Lambda _y= & {} \frac{y^{2}}{2\sigma ^{2}}+2\sigma ^{2}k_y^2 +2ik_{1y} \left( {y-v_{1y} t} \right) \nonumber \\&\quad +\frac{\left( {{y}'-2v_{1y} t-4i\sigma ^{2}k_y } \right) ^{2}}{8\sigma ^{2}} \end{aligned}$$

We have completed the square for the Gaussian integration over the primed coordinates, which is now slightly more complicated because of the extra shifts. The Wigner function for the off-diagonal terms now becomes (11).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferry, D.K., Welland, I. Relativistic Wigner functions in transition metal dichalcogenides. J Comput Electron 17, 110–117 (2018).

Download citation


  • Electron transport
  • Phonon scattering
  • Devices
  • Nanostructures