Journal of Computational Electronics

, Volume 17, Issue 1, pp 163–171 | Cite as

Analytical model of hot carrier degradation in uniaxial strained triple-gate FinFET for circuit simulation



The triple-gate (TG) SOI FinFET has well suppressed short-channel effects compared to planar MOSFET due to increased gate voltage controllability. However, the hot carrier injection (HCI) is a serious reliability issue for nanoscale FinFET and this should be taken care for reliable circuit design. The introduction of uniaxial strain in the channel of FinFET to enhance the performance further limits the reliable design of VLSI circuits. Hence, there is a great need to capture these device-level variations in circuits through physics-based models. In this paper, one such analytical model of hot carrier (HC) degradation in uniaxial strained TG FinFET based on reaction–diffusion mechanism is developed, considering various geometrical aspects of the device, for the first time. The developed model is validated using experimentally calibrated Sentaurus TCAD simulation results. The results show that the strain in the channel worsens the degradation of threshold voltage due to HCI. The developed model is integrated in Cadence circuit simulator, and the impact of HC degradation in strained TG FinFET-based CMOS NAND logic circuit is analyzed.


Hot carrier degradation Impact ionization Reliability Triple-gate FinFET Threshold voltage model 


  1. 1.
    Gill, A., Madhu, C., Kaur, P.: Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology. In: Annual IEEE India Conference, (INDICON), New Delhi. IEEE, pp. 1–4 (2015)Google Scholar
  2. 2.
    Mishra, S., Wong, H.Y., Tiwari, R., Chaudhary, A., Rao, R., Moroz, V., Mahapatra, S.: TCAD-based predictive NBTI framework for sub-20-nm node device design considerations. IEEE Trans. Electron Devices 63(12), 4624–4631 (2016)CrossRefGoogle Scholar
  3. 3.
    Liao, W.S., Liaw, Y.G., Tang, M.C., Chakraborty, S., Liu, C.W.: Investigation of reliability characteristics in NMOS and PMOS FinFETs. IEEE Electron Device Lett. 29(7), 788–790 (2008)CrossRefGoogle Scholar
  4. 4.
    Sriram, S.R., Bindu, B.: Impact of NBTI induced variations on delay locked loop multi-phase clock generator. Microelectron. Reliab. 60, 33–40 (2016)CrossRefGoogle Scholar
  5. 5.
    Bindu, B., Goes, W., Kaczer, B., Grasser, T.: Analytical solution of the switching trap model for negative bias temperature stress. In: IEEE International Integrated Reliability Workshop Final Report. IEEE, pp. 93–96 (2009)Google Scholar
  6. 6.
    Cho, M., Roussel, P., Kaczer, B., Degraeve, R., Franco, J., Aoulaiche, M., Chiarella, T., Kauerauf, T., Horiguchi, N., Groeseneken, G.: Channel hot carrier degradation mechanism in long/short channel-FinFETs. IEEE Trans. Electron Devices 60(12), 4002–4007 (2013)CrossRefGoogle Scholar
  7. 7.
    Kim, S.Y., Lee, J.H.: Hot carrier-induced degradation in bulk FinFETs. IEEE Electron Device Lett. 26(8), 66–568 (2005)Google Scholar
  8. 8.
    Suthram, S., Harris, H.R., Hussain, M.M., Smith, C., Young, C.D., Yang, J.W., Mathews, K., Freeman, K., Majhi, P., Tseng, H.H.H., Jammy, R., Thompson, S.E.: Understanding strain effects on double-gate FinFET drive-current enhancement, hot-carrier reliability and ring-oscillator delay performance via uniaxial wafer bending experiments. In: International Symposium on VLSI Technology, Systems and Applications, Hsinchu. IEEE, pp. 163–164 (2008)Google Scholar
  9. 9.
    Chenming, H., Tam, S.C., Hsu, F.-C., Ko, P.-K., Chan, T.-Y., Terrill, K.W.: Hot-electron-induced MOSFET degradation—model, monitor, and improvement. IEEE J. Solid State Circuits 20(1), 295–305 (1985)CrossRefGoogle Scholar
  10. 10.
    Tam, S., Ko, P.-K., Hu, C.: Lucky-electron model of channel hot-electron injection in MOSFET’s. IEEE Trans. Electron Devices 31(9), 1116–1125 (1984)CrossRefGoogle Scholar
  11. 11.
    Wang, W., Reddy, V., Krishnan, A.T., Vattikonda, R., Krishnan, S., Cao, Y.: Compact modeling and simulation of circuit reliability for 65-nm CMOS technology. IEEE Trans. Device Mater. Reliab. 7(4), 509–517 (2007)CrossRefGoogle Scholar
  12. 12.
    Kufluoglu, H., Ashraful Alam, M.: A geometrical unification of the theories of NBTI and HCI time-exponents and its implications for ultra-scaled planar and surround-gate MOSFETs. IEDM Technical Digest. IEEE International Electron Devices Meeting. IEEE, pp. 113–116 (2004)Google Scholar
  13. 13.
    Maricau, E., De Wit, P., Gielen, G.: An analytical model for hot carrier degradation in nanoscale CMOS suitable for the simulation of degradation in analog IC applications. Microelectron. Reliab. 48, 1576–1580 (2008)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Cotofana, S., Fang, L.: A unified aging model of NBTI and HCI degradation towards lifetime reliability management for nanoscale MOSFET circuits. In: IEEE/ACM International Symposium on Nanoscale Architectures, San Diego, CA. IEEE, pp. 175–180 (2011)Google Scholar
  15. 15.
    Kufluoglu, H., Alam, M.A.: Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs. IEEE Trans. Electron Devices 53(5), 1120–1130 (2006)CrossRefGoogle Scholar
  16. 16.
    Alam, M.A., Kufluoglu, H., Varghese, D., Mahapatra, S.: A comprehensive model for PMOS NBTI degradation: recent progress. Microelectron. Reliab. 47, 853–862 (2006)CrossRefGoogle Scholar
  17. 17.
    Alam, M.A., Mahapatra, S.: A comprehensive model of PMOS NBTI degradation. Microelectron. Reliab. 45(1), 71–81 (2005)CrossRefGoogle Scholar
  18. 18.
    Chakravarthi, S., Krishnan, A., Reddy, V., Machala, C.F., Krishnan, S.: A comprehensive framework for predictive modeling of negative bias temperature instability. In: 42nd Annual IEEE International Reliability Physics Symposium Proceedings. IEEE, pp. 273–282 (2004)Google Scholar
  19. 19.
    Jeppson, K.O., Svensson, C.M.: Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. J. Appl. Phys. 48(5), 2004–2014 (1977)CrossRefGoogle Scholar
  20. 20.
    Sentaurus Device User Guide, Synopsys Inc. CA, USA (2016)Google Scholar
  21. 21.
    Messaris, I., Karatsori, T.A., Fasarakis, N., Theodorou, C.G., Nikolaidis, S., Ghibaudo, G., Dimitriadis, C.A.: Hot carrier degradation modeling of short-channel n-FinFETs suitable for circuit simulators. Microelectron. Reliab. 56, 10–16 (2016)Google Scholar
  22. 22.
    Ling, C.H., Tan, S.E., Ang, D.S.: A study of hot carrier degradation in NMOSFET’s by gate capacitance and charge pumping current. IEEE Trans. Electron Devices 42(7), 1321–1328 (1995)CrossRefGoogle Scholar
  23. 23.
    Bellens, R., De Schrijver, E., Van den Bosch, G., Groeseneken, G., Heremans, P., Maes, H.E.: On the hot-carrier-induced post-stress interface trap generation in n-channel MOS transistors. IEEE Trans. Electron Devices 41(3), 413–419 (1994)CrossRefGoogle Scholar
  24. 24.
    Entner, R.: Modeling and Simulation of Negative Bias Temperature Instability. Vienna University of Technology, Vienna (2007)Google Scholar
  25. 25.
    Chaudhry, A., Sangwan, S.: Modeling of the effect of uniaxial mechanical strain on drain current and threshold voltage of an n-type MOSFET. Solid State Electron. 79, 133–137 (2013)CrossRefGoogle Scholar
  26. 26.
    Fasarakis, N., Tsormpatzoglou, A., Tassis, D.H., Pappas, I., Papathanasiou, K., Bucher, M., Ghibaudo, G., Dimitriadis, C.A.: Compact model of drain current in short-channel triple-gate FinFETs. IEEE Trans. Electron Devices 59(7), 1891–1898 (2012)CrossRefGoogle Scholar
  27. 27.
    Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Ghibaudo, G., Collaert, N., Pananakakis, G.: Analytical threshold voltage model for lightly doped short-channel tri-gate MOSFETs. Solid State Electron. 57(1), 31–34 (2011)CrossRefGoogle Scholar
  28. 28.
    Fasarakis, N., Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Papathanasiou, K., Jomaah, J., Ghibaudo, G.: Analytical unified threshold voltage model of short-channel FinFETs and implementation. Solid State Electron. 64(1), 34–41 (2011)CrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Electronics EngineeringVIT University – Chennai CampusChennaiIndia

Personalised recommendations