Advertisement

Journal of Computational Electronics

, Volume 17, Issue 1, pp 470–478 | Cite as

A signal calculation grid for quantum-dot cellular automata

  • Douglas TougawEmail author
  • Sami Khorbotly
  • Justin Szaday
  • Jeffrey D. Will
Article
  • 115 Downloads

Abstract

The quantum-dot cellular automata (QCA) computing paradigm presents great promise as a potential strategy for future nanocomputing devices. Perhaps the greatest challenge facing the QCA architecture is finding a robust wire crossing strategy. In this paper, the recently introduced QCA signal distribution grid is extended to carry out generalized sum-of-products and product-of-sums calculations that are performed concurrently with signal distribution. The new signal calculation grid is capable of performing an arbitrary number of simultaneous programmable Boolean operations on an arbitrary number of inputs, and the time required to perform all of these parallel calculations is just seven clock cycles.

Keywords

Nanoelectronics Quantum-dot cellular automata (QCA) Wire crossing Signal distribution Boolean logic 

Notes

Acknowledgements

This work was supported by the Leitha and Willard Richardson Professorship of Engineering and the Richardson Summer Research Fellowship, both of which are provided through the Valparaiso University College of Engineering.

References

  1. 1.
    Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRefGoogle Scholar
  2. 2.
    Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)CrossRefGoogle Scholar
  3. 3.
    Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)CrossRefGoogle Scholar
  4. 4.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRefGoogle Scholar
  5. 5.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRefGoogle Scholar
  6. 6.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  7. 7.
    Wood, J.D., Tougaw, D.: Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRefGoogle Scholar
  8. 8.
    Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)CrossRefGoogle Scholar
  9. 9.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRefGoogle Scholar
  10. 10.
    Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin (2014)Google Scholar
  11. 11.
    Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)CrossRefGoogle Scholar
  12. 12.
    Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D Appl. Phys. 39, 1489–1494 (2006)CrossRefGoogle Scholar
  13. 13.
    Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)CrossRefGoogle Scholar
  14. 14.
    Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7 (2013)CrossRefGoogle Scholar
  15. 15.
    LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRefGoogle Scholar
  16. 16.
    Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005)Google Scholar
  17. 17.
    Smith, B., Lim, S.K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005)Google Scholar
  18. 18.
    Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Computer Aided Des. 17(5), 406–418 (1998)CrossRefGoogle Scholar
  19. 19.
    Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005)Google Scholar
  20. 20.
    Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006)Google Scholar
  22. 22.
    Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)CrossRefGoogle Scholar
  23. 23.
    Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)CrossRefGoogle Scholar
  24. 24.
    Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)CrossRefGoogle Scholar
  25. 25.
    Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)CrossRefGoogle Scholar
  26. 26.
    Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRefGoogle Scholar
  27. 27.
    Wakerly, J.E.: Digital Design: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentValparaiso UniversityValparaisoUSA
  2. 2.Computer Science DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations