Skip to main content
Log in

Yagi–Uda nanoantenna For NIR domain

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Single component metal nanoparticles, such as Ag and Au, have surface plasmon resonance wavelengths in the visible region having a weak dependence on particle size. For double component (core/shell) nanoparticles, by proper tuning the core size and shell thickness, a wide variation in optical radiation characteristics as well as in surface plasmon resonance wavelength up to Near-Infrared (NIR) region can be achieved. These aspects encourage one to model an optical Yagi–Uda antenna adopting core/shell nanoparticles as feed element, reflector and directors. In this paper, adopting the COMSOL Multiphysics software, we design all core/shell Yagi–Uda nanoantennas in the NIR domain. \(\hbox {SiO}_{2}/\hbox {Au}\) core/shell nanoparticles are taken as antenna elements for the proposed antenna, whose surface plasmon resonance wavelength can be shifted to the NIR region by tuning the core to shell size ratio in a particular size band. The optimized directivity and gain for this antenna is achieved with only one reflector and one director, thus making it ultra-compact, cost-effective and simple in structure. This type of very highly directional Yagi–Uda nanoantenna can be used in medical science such as in targeted drug delivery and in wireless optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Novotny, L., van Hulst, N.: Antennas for light. Nat. Photon. 5, 83–90 (2011)

    Article  Google Scholar 

  2. Nicolas, B., Alexis, D., Brice, R., Sebastien, B., Brian, S.: Ultracompact and unidirectional metallic antennas. Phys. Rev. B 82, 115429 (2010)

    Article  Google Scholar 

  3. Zhao, Q., Zhou, J., Zhang, F., Lippens, D.: Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009)

    Article  Google Scholar 

  4. Jain, P.K., Lee, S.K., El-Sayed, I.H., El-Sayed, M.A.: Calculated, absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  5. Yousif, B., Bedir, S., Ahmed, S.: Modeling of optical nanoantennas. Phys. Res. Int. Article ID 321075 (2012)

  6. Bryant, W.G., de Abajo Garcı’a, J.F., Aizpurua, J.: Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008)

    Article  Google Scholar 

  7. Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All-dielectric optical nanoantennas. Opt. Expr. 20(18), 20599 (2012)

    Article  Google Scholar 

  8. Oldenburg, S.J., Hale, G.D., Jackson, J.B., Halas, N.J.: Light scattering from dipole and quadrupole nanoshell antennas. Appl. Phys. Lett. 75(8), 1063–65 (1999)

    Article  Google Scholar 

  9. Oldenburg, S.J., Jackson, J.B., Westcott, S.L., Halas, N.J.: Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897–2899 (1999)

    Article  Google Scholar 

  10. Kalele, S., et al.: Nanoshell particles: synthesis, properties and applications. Curr. Sci. 91, 1038–1052 (2006)

    Google Scholar 

  11. Chaabani, W., Chehaider, A., Plain, J.: Comparative theoretical study of the optical properties of silicon/gold, silica/gold core/shell and gold spherical nanoparticles. Plasmonics (2016). doi:10.1007/s11468-016-0206-5

    Google Scholar 

  12. Balanis, C.: Antenna Theory: Analysis and Design. Wiley, New Jersey (2005)

    Google Scholar 

  13. Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F.: Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

    Article  Google Scholar 

  14. Taminiau, T.H., Stefani, F.D., Segerink, F.B., van Hulst, N.F.: Optical antennas direct single-molecule emission. Nat. Photon. 2, 234–237 (2008)

    Article  Google Scholar 

  15. Kosako, T., Kadoya, Y., Hofmann, H.F.: Directional control of light by a nano-optical Yagi–Uda antenna. Nat. Photon. 4, 312–315 (2010)

    Article  Google Scholar 

  16. Krasnoka, A.E., Miroshnichenkob, A.E., Belova, P.A., Kivshar, Y.S.: Huygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 94, 593–598 (2011)

    Article  Google Scholar 

  17. Krasnok, A.E., Simovski, C.R., Belova, P.A., Kivshar, Y.S.: Superdirective dielectric nanoantennas. Nanoscale 6, 7354–7361 (2014)

    Article  Google Scholar 

  18. Palash, B., Bradley, D., Lukas, N.: Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009)

    Article  Google Scholar 

  19. Li, J., Salandrino, A., Engheta, N.: Shaping light beams in thenanometer scale: a Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B76, 245403 (2007)

    Article  Google Scholar 

  20. Hofmann, H.F., Kosako, T., Kadoya, Y.: Design parameters for a nano-optical Yagi–Uda antenna. New J. Phys. 9, 217 (2007)

    Article  Google Scholar 

  21. Taminiau, T.H., Stefani, F.D., Hulst, N.F.v: Enhanced directional excitation and emission of single emitters by a nanooptical Yagi–Uda antenna. Opt. Expr. 16, 10858–10866 (2008)

    Article  Google Scholar 

  22. Li, J., Salandrino, A., Engheta, N.: Optical spectrometer at the nanoscale using optical Yagi–Uda nanoantennas. Phys. Rev. B 79, 195104 (2009)

    Article  Google Scholar 

  23. Dregely, D., Taubert, R., Dorfmüller, J., Vogelgesang, R., Kern, K., Giessen, H.: 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2, 267 (2011)

    Article  Google Scholar 

  24. Maksymov, I.S., et al.: Multifrequency tapered plasmonic nanoantennas. Opt. Commun. 285, 821–824 (2012)

    Article  Google Scholar 

  25. Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All- dielectric optical nanoantenna. Opt. Expr. 20, 20599–20604 (2012)

    Article  Google Scholar 

  26. Ruffino, F., Piccitto, G., Grimaldi, M.G.: Simulations of the light scattering properties of metal/oxide core/shell nanospheres. J. Nanosci. Article ID 407670 (2014)

  27. Satitchantrakul, T., Silapunt, R.: Analysis and design of the dielectric Yagi–Uda nanoantenna with a double driven element. In: Session 4A10 SC2: Nanoantennnas, pp. 1836 (2014)

  28. Xiong, X.Y.Z., Jiang, L.J., Sha, W.E.I., Lo, Y.H., Chew, W.C.: Compact nonlinear Yagi–Uda nanoantennas. Sci. Rep. 6, 18872 (2016). doi:10.1038/srep18872

    Article  Google Scholar 

  29. Jutika, D., Rashmi, S., Pranayee, D.: Modeling of core–shell nanoparticles for application in the domain of communication. Adv. Res. Electr. Electron. Eng. 2, 53 (2015)

    Google Scholar 

  30. Knight, M.W., et al.: Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 9, 2188–2192 (2009)

    Article  Google Scholar 

  31. Yan, L., Wan Mingjie, W., Wenyang, C.Z., Peng, Z., Zhenlin, W.: Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core–shell nanoparticles. Sci. Rep. 5, 12491 (2015). doi:10.1038/srep12491

    Article  Google Scholar 

  32. Liu, W., et al.: Ultra-directional forward scattering by individual core–shell nanoparticles. Opt. Expr. 22, 16178 (2014)

    Article  Google Scholar 

  33. Ghanim, A.R.M., et al.: Highly directive hybrid Yagi–Uda nanoantenna for radiation emission enhancement. IEEE Photon. J. 8, 5501712 (2016)

    Article  Google Scholar 

  34. Ma, L., Lin, J., Ma, Y., Liu, B., Tan, J., Jin, P.: Yagi–Uda optical antenna array collimated laser based on surface plasmons. Opt. Commun. 368, 197–201 (2016)

    Article  Google Scholar 

  35. Sarhan, M.M. (ed.): Computational Finite Element Methods in Nanotechnology. CRC Press, Boston (2012)

  36. Khoury, C.G., Norton, S.J., Vo-Dinh, T.: Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method. Nanotechnology 21, 315203 (2010)

    Article  Google Scholar 

  37. Devi, J., Saikia, R., Datta, P.: Modeling of absorption and scattering properties of core–shell nanoparticles for application as nanoantenna in optical domain. J. Phys. Confer. Ser. 759, 012039 (2016). doi:10.1088/1742-6596/759/1/012039

    Article  Google Scholar 

  38. Uday, K.C., Nader, E.: Internal homogenization: effective permittivity of a coated sphere. Opt. Expr. 20(21), 22976 (2012)

    Article  Google Scholar 

  39. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125 (1962)

    Article  MATH  Google Scholar 

  40. Sihvola, A.H.: Electromagnetic Mixing Formulas and Applications. Institution of Electrical Engineers, London (2008)

    Google Scholar 

  41. Aden, A.L., Kerker, M.: Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys. 22, 1242–1246 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oldenburg, S.J., Hale, G.D., Jackson, J.B., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)

    Article  Google Scholar 

  43. Liu, P., Huanjun, C., Hao, W., Jiahao, Y., Zhaoyong, L., Guowei, Y.: Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced raman scattering for monolayer molecule detection. J. Phys. Chem. C 119, 1234–1246 (2015)

    Article  Google Scholar 

  44. Wang, H., Fu, K., Drezek, R.A., Halas, N.J.: Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness. Appl. Phys. B 84, 191–195 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutika Devi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, J., Datta, P. Yagi–Uda nanoantenna For NIR domain. J Comput Electron 17, 406–418 (2018). https://doi.org/10.1007/s10825-017-1065-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1065-9

Keywords

Navigation