Skip to main content

Design and analysis of a gate-all-around CNTFET-based SRAM cell

Abstract

This paper proposes a highly stable and low power 6-T static random access memory (SRAM) cell design using a gate-all-around carbon nanotube field effect transistor (GAA-CNTFET). The 6-T SRAM cell is designed and analyzed in HSPICE for different performance metrics viz. SNM, read SNM, write SNM, delay, and leakage power for both the top gate CNTFET and the GAA-CNTFET. The effect of variation of the power supply voltage on the leakage current is also presented, and it was found that the GAA-CNTFET accounts for low power dissipation at higher supply voltage. The 6-T SRAM cell is analyzed for different flat band conditions of the p-type CNTFET taking flatband of the n-type as constant, which is called a dual flat band voltage technique. Through simulations, it is found that by increasing the flatband voltage of a p-type CNTFET, the SRAM gives better performance. The dual flatband variation technique is compared with dual chirality technique, and it is observed that both techniques give the same results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)

    Article  Google Scholar 

  2. Chen, T.-C.: Overcoming research challenges for CMOS scaling: industry directions. In: Proceedings of the International Conference on Solid-State and IC Technology, pp. 4–7 (2006)

  3. Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. In: Proceedings of the Electron Devices Meeting, pp. 289–292 (2002)

  4. Quitoriano, J.N., Kamins, T.I.: Integratable nanowire transistors. Nano Lett. 8(12), 4410–4414 (2008)

    Article  Google Scholar 

  5. Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)

    Article  Google Scholar 

  6. Kastner, M.A.: The single-electron transistor. Rev. Mod. Phys. 64(3), 849 (1992)

    Article  Google Scholar 

  7. Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)

    Article  Google Scholar 

  8. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)

    Article  Google Scholar 

  9. Dürkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)

    Article  Google Scholar 

  10. McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)

    Article  Google Scholar 

  11. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)

    Article  Google Scholar 

  12. Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)

    Article  Google Scholar 

  13. Shahi, A.A.M., Zarkesh-Ha, P., Elahi, M.: Comparison of variations in MOSFET versus CNFET in gigascale integrated systems. In: Proceedings of the Thirteenth International Symposium on Quality Electronic Design (ISQED), pp. 378–383 (2012)

  14. Martel, R., Wong, H.-S.P., Chan, K.K., Avouris, P.: Carbon nanotube field effect transistors for logic applications. In: Proceedings of the Electron Devices Meeting, p. 159 (2001)

  15. Appenzeller, J.: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)

    Article  Google Scholar 

  16. Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 20(6), 2798–2801 (2002)

    Article  Google Scholar 

  17. Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80(20), 3817–3819 (2002)

    Article  Google Scholar 

  18. Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)

    Article  Google Scholar 

  19. Franklin, A.D., Lin, A., Wong, H.-S.P., Chen, Z.: Current scaling in aligned carbon nanotube array transistors with local bottom gating. IEEE Electron Device Lett. 31(7), 644–646 (2010)

    Article  Google Scholar 

  20. Pourfath, M., Ungersboeck, E., Gehring, A., Kosina, H., Selberherr, S., Park, W.-J., Cheong, B.-H.: Numerical analysis of coaxial double gate Schottky barrier carbon nanotube field effect transistors. J. Comput. Electron. 4(1), 75–78 (2005)

    Article  Google Scholar 

  21. Zukoski, A., Yang, X., Mohanram, K.: Universal logic modules based on double-gate carbon nanotube transistors. In: Proceedings of the 48th Design Automation Conference, pp. 884–889. ACM (2011)

  22. Hien, D.S., Luong, N.T., Tuan, T.T.A., Nga, D.V.: 3D Simulation of coaxial carbon nanotube field effect transistor. J. Phys. 187(1), 012061 (2009)

  23. Franklin, A.D., Sayer, R.A., Sands, T.D., Fisher, T.S., Janes, D.B.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B 27(2), 821–826 (2009)

  24. Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)

    Article  Google Scholar 

  25. Raychowdhury, A., Mukhopadhyay, S., Roy, K.: A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(10), 1411–1420 (2004)

    Article  Google Scholar 

  26. Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1867 (2003)

    Article  Google Scholar 

  27. Stanford University Nanoelectronics Group. Stanford University CNFET Model. Retrieved from https://nano.stanford.edu/stanford-cnfet-model-verilog

  28. Lee, C.-S., Wong, H.-S.P.: Stanford virtual-source carbon nanotube field-effect transistors model. nanoHUB. doi:10.4231/D3BK16Q68, https://nanohub.org/publications/42/2 (2015)

  29. Kim, Y.-B.: Integrated circuit design based on carbon nanotube field effect transistor. Trans. Electr. Electron. Mater. 12(5), 175–188 (2011)

    Article  Google Scholar 

  30. Singh, A., Khosla, M., Raj, B.: Design and analysis of electrostatic doped Schottky barrier carbon nanotube FET based low power SRAM. Int. J. Electron. Commun. AEU 80, 67–72 (2017)

    Article  Google Scholar 

  31. Singh, A., Khosla, M., Raj, B.: CNTFET modelling and low power SRAM cell design. In: 2016 IEEE 5th Global Conference on Consumer Electronics (GCCE), pp. 1–4 (2016)

  32. Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of the 2010 IEEE International SOC Conference (SOCC), pp. 339–342 (2010)

  33. Sheng, L., Kim, Y.B., Lombardi, F.: Design of a CNTFET-based SRAM cell by dual-chirality selection. IEEE Trans. Nanotechnol. 9(1), 30–37 (2010)

    Article  Google Scholar 

  34. Sethi, D., Kaur, M., Singh, G.: Design and performance analysis of a CNFET-based TCAM cell with dual-chirality selection. J. Comput. Electron. doi:10.1007/s10825-017-0952-4 (2017)

  35. Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field-effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)

    Article  Google Scholar 

  36. Farmer, D.B., Gordon, R.G.: Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 6(4), 699–703 (2006)

    Article  Google Scholar 

  37. Anis, M., Elmasry, M.: Multi-threshold CMOS digital circuits—managing leakage power, vol. 3. Kluwer Academic Publishers, Springer (2003)

  38. Anis, M., Areibi, S., Elmasry, M.: Design and optimization of multithreshold CMOS (MTCMOS) circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(10), 1324–1342 (2003)

    Article  Google Scholar 

  39. Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Singh.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saiphani Kumar, G., Singh, A. & Raj, B. Design and analysis of a gate-all-around CNTFET-based SRAM cell. J Comput Electron 17, 138–145 (2018). https://doi.org/10.1007/s10825-017-1056-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1056-x

Keywords