Abstract
This paper proposes a highly stable and low power 6-T static random access memory (SRAM) cell design using a gate-all-around carbon nanotube field effect transistor (GAA-CNTFET). The 6-T SRAM cell is designed and analyzed in HSPICE for different performance metrics viz. SNM, read SNM, write SNM, delay, and leakage power for both the top gate CNTFET and the GAA-CNTFET. The effect of variation of the power supply voltage on the leakage current is also presented, and it was found that the GAA-CNTFET accounts for low power dissipation at higher supply voltage. The 6-T SRAM cell is analyzed for different flat band conditions of the p-type CNTFET taking flatband of the n-type as constant, which is called a dual flat band voltage technique. Through simulations, it is found that by increasing the flatband voltage of a p-type CNTFET, the SRAM gives better performance. The dual flatband variation technique is compared with dual chirality technique, and it is observed that both techniques give the same results.
This is a preview of subscription content, access via your institution.













References
Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)
Chen, T.-C.: Overcoming research challenges for CMOS scaling: industry directions. In: Proceedings of the International Conference on Solid-State and IC Technology, pp. 4–7 (2006)
Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. In: Proceedings of the Electron Devices Meeting, pp. 289–292 (2002)
Quitoriano, J.N., Kamins, T.I.: Integratable nanowire transistors. Nano Lett. 8(12), 4410–4414 (2008)
Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)
Kastner, M.A.: The single-electron transistor. Rev. Mod. Phys. 64(3), 849 (1992)
Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)
Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)
Dürkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)
McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)
Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33(7), 883–891 (1995)
Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)
Shahi, A.A.M., Zarkesh-Ha, P., Elahi, M.: Comparison of variations in MOSFET versus CNFET in gigascale integrated systems. In: Proceedings of the Thirteenth International Symposium on Quality Electronic Design (ISQED), pp. 378–383 (2012)
Martel, R., Wong, H.-S.P., Chan, K.K., Avouris, P.: Carbon nanotube field effect transistors for logic applications. In: Proceedings of the Electron Devices Meeting, p. 159 (2001)
Appenzeller, J.: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)
Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 20(6), 2798–2801 (2002)
Wind, S.J., Appenzeller, J., Martel, R., Derycke, V.P.P.A., Avouris, P.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80(20), 3817–3819 (2002)
Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)
Franklin, A.D., Lin, A., Wong, H.-S.P., Chen, Z.: Current scaling in aligned carbon nanotube array transistors with local bottom gating. IEEE Electron Device Lett. 31(7), 644–646 (2010)
Pourfath, M., Ungersboeck, E., Gehring, A., Kosina, H., Selberherr, S., Park, W.-J., Cheong, B.-H.: Numerical analysis of coaxial double gate Schottky barrier carbon nanotube field effect transistors. J. Comput. Electron. 4(1), 75–78 (2005)
Zukoski, A., Yang, X., Mohanram, K.: Universal logic modules based on double-gate carbon nanotube transistors. In: Proceedings of the 48th Design Automation Conference, pp. 884–889. ACM (2011)
Hien, D.S., Luong, N.T., Tuan, T.T.A., Nga, D.V.: 3D Simulation of coaxial carbon nanotube field effect transistor. J. Phys. 187(1), 012061 (2009)
Franklin, A.D., Sayer, R.A., Sands, T.D., Fisher, T.S., Janes, D.B.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B 27(2), 821–826 (2009)
Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)
Raychowdhury, A., Mukhopadhyay, S., Roy, K.: A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(10), 1411–1420 (2004)
Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1867 (2003)
Stanford University Nanoelectronics Group. Stanford University CNFET Model. Retrieved from https://nano.stanford.edu/stanford-cnfet-model-verilog
Lee, C.-S., Wong, H.-S.P.: Stanford virtual-source carbon nanotube field-effect transistors model. nanoHUB. doi:10.4231/D3BK16Q68, https://nanohub.org/publications/42/2 (2015)
Kim, Y.-B.: Integrated circuit design based on carbon nanotube field effect transistor. Trans. Electr. Electron. Mater. 12(5), 175–188 (2011)
Singh, A., Khosla, M., Raj, B.: Design and analysis of electrostatic doped Schottky barrier carbon nanotube FET based low power SRAM. Int. J. Electron. Commun. AEU 80, 67–72 (2017)
Singh, A., Khosla, M., Raj, B.: CNTFET modelling and low power SRAM cell design. In: 2016 IEEE 5th Global Conference on Consumer Electronics (GCCE), pp. 1–4 (2016)
Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of the 2010 IEEE International SOC Conference (SOCC), pp. 339–342 (2010)
Sheng, L., Kim, Y.B., Lombardi, F.: Design of a CNTFET-based SRAM cell by dual-chirality selection. IEEE Trans. Nanotechnol. 9(1), 30–37 (2010)
Sethi, D., Kaur, M., Singh, G.: Design and performance analysis of a CNFET-based TCAM cell with dual-chirality selection. J. Comput. Electron. doi:10.1007/s10825-017-0952-4 (2017)
Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J.: Externally assembled gate-all-around carbon nanotube field-effect transistor. IEEE Electron Device Lett. 29(2), 183–185 (2008)
Farmer, D.B., Gordon, R.G.: Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 6(4), 699–703 (2006)
Anis, M., Elmasry, M.: Multi-threshold CMOS digital circuits—managing leakage power, vol. 3. Kluwer Academic Publishers, Springer (2003)
Anis, M., Areibi, S., Elmasry, M.: Design and optimization of multithreshold CMOS (MTCMOS) circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(10), 1324–1342 (2003)
Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saiphani Kumar, G., Singh, A. & Raj, B. Design and analysis of a gate-all-around CNTFET-based SRAM cell. J Comput Electron 17, 138–145 (2018). https://doi.org/10.1007/s10825-017-1056-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-017-1056-x