From materials to systems: a multiscale analysis of nanomagnetic switching

Abstract

With the increasing demand for low-power electronics, nanomagnetic devices have emerged as strong potential candidates to complement present day transistor technology. A variety of novel switching effects such as spin torque and giant spin Hall offer scalable ways to manipulate nanosized magnets. However, the low intrinsic energy cost of switching spins is often compromised by the energy consumed in the overhead circuitry in creating the necessary switching fields. Scaling brings in added concerns such as the ability to distinguish states (readability) and to write information without spontaneous backflips (reliability). A viable device must ultimately navigate a complex multi-dimensional material and design space defined by volume, energy budget, speed, and a target read–write–retention error. In this paper, we review the major challenges facing nanomagnetic devices and present a multiscale computational framework to explore possible innovations at different levels (material, device, or circuit), along with a holistic understanding of their overall energy delay–reliability trade-off.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Change history

  • 23 February 2018

    The original version of this article unfortunately contained an error. The authors would like to correct the error with this erratum.

References

  1. 1.

    Ghosh, A.W.: Nanoelectronics: a molecular view. World Scientific Series in Nanoscience and Nanotechnology. World Scientific Publishing Company Pte Limited (2016)

  2. 2.

    Salahuddin, S., Supriyo, D.: Interacting systems for self-correcting low power switching. Appl. Phys. Lett. 90(9), 093503 (2007)

    Article  Google Scholar 

  3. 3.

    Huai, Y.: Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull. 18(6), 33–40 (2008)

    Google Scholar 

  4. 4.

    Grupp, L.M., Davis, J.D., Swanson, S.: The bleak future of NAND flash memory. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, pp. 2–2. USENIX Association (2012)

  5. 5.

    Clarke, P.: Everspin samples 256Mbit MRAMs, 1Gbit coming. EE News Europe. http://www.eenewseurope.com/news/everspin-samples-256mbit-mrams-1gbit-coming (2016)

  6. 6.

    GLOBALFOUNDRIES: GLOBALFOUNDRIES Launches Embedded MRAM on 22FDX\(^{\textregistered }\) Platform. https://www.globalfoundries.com/news-events/press-releases/globalfoundries-launches-embedded-mram-22fdxr-platform (2016)

  7. 7.

    Manners, D.: Everspin and GloFo to put embedded MRAM on SoCs. Electronics Weekly. https://www.electronicsweekly.com/news/business/everspin-glofo-put-embedded-mram-socs-2016-11/ (2016)

  8. 8.

    Coughlin, T.: Memories of the future. Forbes. https://www.forbes.com/sites/tomcoughlin/2016/12/08/memories-of-the-future/ (2016)

  9. 9.

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004)

    Article  Google Scholar 

  10. 10.

    Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MGO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)

    Article  Google Scholar 

  11. 11.

    Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300 K by suppression of ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93(8), 082508 (2008)

    Article  Google Scholar 

  12. 12.

    Khalili-Amiri, P., Zeng, Z.M., Upadhyaya, P., Rowlands, G., Zhao, H., Krivorotov, I.N., Wang, J.-P., Jiang, H.W., Katine, J.A., Langer, J., et al.: Low write-energy magnetic tunnel junctions for high-speed spin-transfer-torque MRAM. IEEE Electron Device Lett. 32(1), 57–59 (2011)

    Article  Google Scholar 

  13. 13.

    Mather, P.G., Read, J.C., Buhrman, R.A.: Disorder, defects, and band gaps in ultrathin (001) MGO tunnel barrier layers. Phys. Rev. B 73(20), 205412 (2006)

    Article  Google Scholar 

  14. 14.

    Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    Article  Google Scholar 

  15. 15.

    Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, Sl, Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010)

    Article  Google Scholar 

  16. 16.

    Nakayama, M., Kai, T., Shimomura, N., Amano, M., Kitagawa, E., Nagase, T., Yoshikawa, M., Kishi, T., Ikegawa, S., Yoda, H.: Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 103(7), 07A710 (2008)

    Article  Google Scholar 

  17. 17.

    Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., et al.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009)

    Article  Google Scholar 

  18. 18.

    Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T., Suzuki, Y.: Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96(2), 022506 (2010)

    Article  Google Scholar 

  19. 19.

    Wang, W.-G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2012)

    Article  Google Scholar 

  20. 20.

    Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R.A., et al.: Spin transfer torques in MnSi at ultralow current densities. Science 330(6011), 1648–1651 (2010)

  21. 21.

    Liu, L., Moriyama, T., Ralph, D.C., Buhrman, R.A.: Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett. 106(3), 036601 (2011)

    Article  Google Scholar 

  22. 22.

    Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555–559 (2012)

    Article  Google Scholar 

  23. 23.

    Pai, C.-F., Liu, L., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin transfer torque devices utilizing the giant spin hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012)

    Article  Google Scholar 

  24. 24.

    Mellnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., et al.: Spin-transfer torque generated by a topological insulator. Nature 511(7510), 449–451 (2014)

    Article  Google Scholar 

  25. 25.

    Masum Habib, K.M., Sajjad, R.N., Ghosh, A.W.: Chiral tunneling of topological states: towards the efficient generation of spin current using spin-momentum locking. Phys. Rev. Lett. 114(17), 176801 (2015)

    Article  Google Scholar 

  26. 26.

    Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., et al.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13(4), 345–351 (2014)

    Article  Google Scholar 

  27. 27.

    Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., et al.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516(7531), 370–373 (2014)

    Article  Google Scholar 

  28. 28.

    DSouza, N., Fashami, M.S., Bandyopadhyay, S., Atulasimha, J.: Experimental clocking of nanomagnets with strain for ultralow power boolean logic. Nano Lett. 16(2), 1069–1075 (2016)

    Article  Google Scholar 

  29. 29.

    Xie, Y., Rungger, I., Munira, K., Stamenova, M., Sanvito, A., Ghosh, A.W.: Spin transfer torque: a multiscale picture. In: Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, p. 91 (2016)

  30. 30.

    White, J.S., Levatić, I., Omrani, A.A., Egetenmeyer, N., Prša, K., Zivković, I., Gavilano, J.L., Kohlbrecher, J., Bartkowiak, M., Berger, H., Rønnow, H.M.: Electric field control of the skyrmion lattice in Cu2OSeO3. J. Phys. Condens. Matter Inst. Phys. J. 24, 432201 (2012)

    Article  Google Scholar 

  31. 31.

    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic heusler alloys. Phys. Rev. B 66, 134428 (2002)

    Article  Google Scholar 

  32. 32.

    Youn, S.J., Min, B.I.: Effects of the spin-orbit interaction in heusler compounds: electronic structures and fermi surfaces of nimnsb and ptmnsb. Phys. Rev. B 51, 10436–10442 (1995)

    Article  Google Scholar 

  33. 33.

    Toboła, J., Pierre, J.: Electronic phase diagram of the XTZ (X=Fe Co, Ni; T=Ti, V, Zr, Nb, Mn; Z=Sn, Sb) semi-Heusler compounds. J. Alloys Compd. 296(1–2), 243–252 (2000)

    Article  Google Scholar 

  34. 34.

    Kandpal, H.C., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39(5), 776 (2006)

    Article  Google Scholar 

  35. 35.

    Galanakis, I., Mavropoulos, Ph, Dederichs, P.H.: Electronic structure and slater-pauling behaviour in half-metallic heusler alloys calculated from first principles. J. Phys. D Appl. Phys. 39(5), 765 (2006)

    Article  Google Scholar 

  36. 36.

    William, H., Butler, C., Mewes, K.A., Liu, C., Xu, T.: Rational design of half-metallic heterostructures. arXiv preprint arXiv:1103.3855 (2011)

  37. 37.

    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)

    Article  Google Scholar 

  38. 38.

    Slater, J.C., Koster, G.F.: Simplified LACO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  39. 39.

    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  40. 40.

    Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C.: The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015)

    Article  Google Scholar 

  41. 41.

    Akbarzadeh, A.R., Ozoli, V., Wolverton, C.: First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system. Adv. Mater. 19(20), 3233–3239 (2007)

    Article  Google Scholar 

  42. 42.

    Kirklin, S., Meredig, B., Wolverton, C.: High-throughput computational screening of new Li-ion battery anode materials. Adv. Energy Mater. 3(2), 252–262 (2013)

    Article  Google Scholar 

  43. 43.

    Hanssen, K.E.H.M., Mijnarends, P.E., Rabou, L.P.L.M., Buschow, K.H.J.: Positron-annihilation study of the half-metallic ferromagnet nimnsb: Experiment. Phys. Rev. B 42, 1533–1540 (1990)

    Article  Google Scholar 

  44. 44.

    Terada, M., Endo, K., Fujita, Y., Kimura, R.: Magnetic properties of Clb compounds; CoVSb, CoTiSb and NiTiSb. J. Phys. Soc. Jpn. 32(1), 91–94 (1972)

    Article  Google Scholar 

  45. 45.

    Heyne, L., Igarashi, T., Kanomata, T., Neumann, K.-U., Ouladdiaf, B., Ziebeck, K.R.A.: Atomic and magnetic order in the weak ferromagnet CoVSb: is it a half-metallic ferromagnet? J. Phys. Condens. Matter 17(33), 4991 (2005)

    Article  Google Scholar 

  46. 46.

    Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63(5), 054416 (2001)

    Article  Google Scholar 

  47. 47.

    Nikolaev, K., Kolbo, P., Pokhil, T., Peng, X., Chen, Y., Ambrose, T., Mryasov, O.: All-Heusler alloy current-perpendicular-to-plane giant magnetoresistance. Appl. Phys. Lett. 94(22), 222501 (2009)

    Article  Google Scholar 

  48. 48.

    Li, S., Takahashi, Y.K., Sakuraba, Y., Chen, J., Furubayashi, T., Mryasov, O., Faleev, S., Hono, K.: Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve. J. Appl. Phys. 119(9), 093911 (2016)

    Article  Google Scholar 

  49. 49.

    Azadani, J.G., Munira, K., Romero, J., Ma, J., Sivakumar, C., Ghosh, A.W., Butler, W.H.: Anisotropy in layered half-metallic Heusler alloy superlattices. J. Appl. Phys. 119(4), 043904 (2016)

    Article  Google Scholar 

  50. 50.

    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  51. 51.

    Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73(8), 085414 (2006)

    Article  Google Scholar 

  52. 52.

    Theodonis, I., Kioussis, N., Kalitsov, A., Chshiev, M., Butler, W.H.: Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett. 97(23), 237205 (2006)

    Article  Google Scholar 

  53. 53.

    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-n materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002)

    Article  Google Scholar 

  54. 54.

    Yanik, A.A., Klimeck, G., Datta, S.: Quantum transport with spin dephasing: a nonequlibrium Green’s function approach. Phys. Rev. B Condens. Matter Mater. Phys. 76(4), 1–11 (2007)

    Article  Google Scholar 

  55. 55.

    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  Google Scholar 

  56. 56.

    Behtash, B.-A., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nano 5(4), 266–270 (2010)

    Article  Google Scholar 

  57. 57.

    Brown Jr., W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677 (1963)

    Article  Google Scholar 

  58. 58.

    Butler, W.H., Mewes, T., Mewes, C.K.A., Visscher, P.B., Rippard, W.H., Russek, S.E., Heindl, R.: Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Magn. 48(12), 4684–4700 (2012)

    Article  Google Scholar 

  59. 59.

    Xie, Y., Behin-Aein, B., Ghosh, A.W.: Fokker planck study of parameter dependence on write error slope in spin-torque switching. IEEE Trans. Electron Devices 64(1), 319–324 (2017)

    Article  Google Scholar 

  60. 60.

    Liu, H., Bedau, D., Sun, J.Z., Mangin, S., Fullerton, E.E., Katine, J.A., Kent, A.D.: Dynamics of spin torque switching in all-perpendicular spin valve nanopillars. J. Magn. Magn. Mater. 358, 233–258 (2014)

    Article  Google Scholar 

  61. 61.

    Liu, H., Bedau, D., Backes, D., Katine, J.A., Langer, J., Kent, A.D.: Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010)

    Article  Google Scholar 

  62. 62.

    Shaw, J.M., Nembach, H.T., Weiler, M., Silva, T.J., Schoen, M., Sun, J.Z., Worledge, D.C.: Perpendicular magnetic anisotropy and easy cone state in Ta/Co60Fe20B20/MgO. IEEE Magn. Lett. 6, 1–4 (2015)

    Article  Google Scholar 

  63. 63.

    Sun, J.Z., Robertazzi, R.P., Nowak, J., Trouilloud, P.L., Hu, G., Abraham, D.W., Gaidis, M.C., Brown, S.L., Sullivan, E.J.O., Gallagher, W.J., et al.: Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84(6), 064413 (2011)

    Article  Google Scholar 

  64. 64.

    Finocchio, G., Azzerboni, B., Fuchs, G.D., Buhrman, R.A., Torres, L.: Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions. J. Appl. Phys. 101(6), 063914 (2007)

    Article  Google Scholar 

  65. 65.

    Munira, K., Visscher, P.B.: Calculation of energy-barrier lowering by incoherent switching in spin-transfer torque magnetoresistive random-access memory. J. Appl. Phys. 117(17), 17B710 (2015)

    Article  Google Scholar 

  66. 66.

    Johnson, M.T., Bloemen, P.J.H., Den Broeder, F.J.A., De Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409 (1996)

    Article  Google Scholar 

  67. 67.

    Sun, J.: Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62(1), 570–578 (2000)

    MathSciNet  Article  Google Scholar 

  68. 68.

    Dyakonov, M.I., Perel, V.I.: Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971)

    Article  Google Scholar 

  69. 69.

    Vanessa, S., Myers, R.C., Kato, Y.K., Lau, W.H., Gossard, A.C., Awschalom, D.D.: Spatial imaging of the spin hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1(1), 31–35 (2005)

    Article  Google Scholar 

  70. 70.

    Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9(3), 230–234 (2010)

    Article  Google Scholar 

  71. 71.

    Hong, S., Sayed, S., Datta, S.: Spin circuit model for 2d channels with spin-orbit coupling. Sci. Rep. 6 (2016)

  72. 72.

    Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of feco using voltage pulses. Nat. Mater. 11(1), 39–43 (2012)

    Article  Google Scholar 

  73. 73.

    Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H.: Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104(21), 212406 (2014)

    Article  Google Scholar 

  74. 74.

    Pertsev, N.A.: Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy. Sci. Rep. 3, 2757 (2013)

    Article  Google Scholar 

  75. 75.

    Duan, C.-G., Velev, J.P., Sabirianov, R.F., Zhu, Z., Chu, J., Jaswal, S.S., Tsymbal, E.Y.: Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008)

    Article  Google Scholar 

  76. 76.

    Camsari, K.Y., Pervaiz, A.Z., Faria, R., Marinero, E.E., Datta, S.: Ultrafast spin-transfer-torque switching of synthetic ferrimagnets. IEEE Magn. Lett. 7, 1–5 (2016)

    Article  Google Scholar 

  77. 77.

    Wang, M., Tan, G.-L., Zhang, Q.: Multiferroic properties of nanocrystalline PbTiO3 ceramics. J. Am. Ceram. Soc. 93(8), 2151–2154 (2010)

    Article  Google Scholar 

  78. 78.

    Ederer, C., Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)

    Article  Google Scholar 

  79. 79.

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W., Binek, C.: Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94(11), 117203 (2005)

    Article  Google Scholar 

  80. 80.

    Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9(9), 756–761 (2010)

    Article  Google Scholar 

  81. 81.

    Ganguly, S., Camsari, K.Y., Datta, S.: Evaluating spintronic devices using the modular approach. IEEE J. Explor. Solid-State Comput. Devices Circuits 2, 51–60 (2016)

    Article  Google Scholar 

  82. 82.

    Albrecht, T.R., Bedau, D., Dobisz, E., Gao, H., Grobis, M., Hellwig, O., Kercher, D., Lille, J., Marinero, E., Patel, K., et al.: Bit patterned media at 1 Tdot/in 2 and beyond. IEEE Trans. Magn. 49(2), 773–778 (2013)

    Article  Google Scholar 

  83. 83.

    Munira, K., Butler, W.H., Ghosh, A.W.: A quasi-analytical model for energy-delay-reliability tradeoff studies during write operations in a perpendicular STT-RAM cell. IEEE Trans. Electron Devices 59(8), 2221–2226 (2012)

    Article  Google Scholar 

  84. 84.

    Camsari, K.Y., Ganguly, S., Datta, S.: Modular Approach to Spintronics. Sci. Rep. 5, 10571 (2015). doi:10.1038/srep10571

  85. 85.

    Group: Modular Approach to Spintronics

  86. 86.

    Datta, S., Diep, V.Q., Behin-Aein, B.: What constitutes a nanoswitch? A Perspective. arXiv:1404.2254 [cond-mat] (2014)

  87. 87.

    Zhu, J.G.J., Bromberg, D.M., Moneck, M., Sokalski, V., Pileggi, L.: mLogic: all spin logic device and circuits. In: 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S), pp. 1–2 (2015)

  88. 88.

    Datta, S., Salahuddin, S., Behin-Aein, B.: Non-volatile spin switch for Boolean and non-Boolean logic. Appl. Phys. Lett. 101(25), 252411 (2012)

    Article  Google Scholar 

  89. 89.

    Jaiswal, A., Roy, K.: MESL: proposal for a non-volatile cascadable magneto-electric spin logic. Sci. Rep. 7 (2017)

  90. 90.

    Mankalale, M.G., Liang, Z., Smith, A.K., Mahendra, D.C., Jamali, M., Wang, J.-P., Sapatnekar, S.S.: A fast magnetoelectric device based on current-driven domain wall propagation. In: 74th Annual Device Research Conference (DRC), pp. 1–2. IEEE (2016)

  91. 91.

    D’Souza, N., Atulasimha, J., Bandyopadhyay, S.: Four-state nanomagnetic logic using multiferroics. J. Phys. D Appl. Phys. 44(26), 265001 (2011)

    Article  Google Scholar 

  92. 92.

    Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  93. 93.

    Nikonov, D.E., Young, I.A.: Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015)

  94. 94.

    Ganguly, S., Camsari, K.Y., Datta, S.: Spin switch model. nanoHUB (2014). doi:10.4231/D3C824F8D

  95. 95.

    Ganguly, S.: Spintronic Device Modeling and Evaluation Using Modular Approach to Spintronics. Ph.D. thesis, Purdue University (2016)

  96. 96.

    Diep, V.Q., Sutton, B., Behin-Aein, B., Datta, S.: Spin switches for compact implementation of neuron and synapse. Appl. Phys. Lett. 104(22), 222405 (2014)

    Article  Google Scholar 

  97. 97.

    Sharad, M., Fan, D., Roy, K.: Spin-neurons: a possible path to energy-efficient neuromorphic computers. J. Appl. Phys. 114(23), 234906 (2013)

    Article  Google Scholar 

  98. 98.

    Ramasubramanian, S.G., Venkatesan, R., Sharad, M., Roy, K., Raghunathan, A.: SPINDLE: SPINtronic deep learning engine for large-scale neuromorphic computing. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design, ISLPED ’14, New York, NY, USA, pp. 15–20. ACM (2014)

  99. 99.

    Mizrahi, A., Locatelli, N., Lebrun, R., Cros, V., Fukushima, A., Kubota, H., Yuasa, S., Querlioz, D., Grollier, J.: Controlling the phase locking of stochastic magnetic bits for ultra-low power computation. Sci. Rep. 6, 30535 (2016)

    Article  Google Scholar 

  100. 100.

    Venkatesan, R., Venkataramani, S., Fong, X., Roy, K., Raghunathan, A.: Spintastic: spin-based stochastic logic for energy-efficient computing. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1575–1578 (2015)

  101. 101.

    Locatelli, N., Vincent, A.F., Mizrahi, A., Friedman, J.S., Vodenicarevic, D., Kim, J.-V., Klein, J.-O., Zhao, W., Grollier, J., Querlioz, D.: Spintronic devices as key elements for energy-efficient neuroinspired architectures. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE ’15, San Jose, CA, USA, pp. 994–999 (2015). EDA Consortium

  102. 102.

    Behin-Aein, B., Diep, V., Datta, S.: A building block for hardware belief networks. Sci. Rep. 6 (2016)

  103. 103.

    Camsari, K.Y., Faria R., Sutton, B.M., Datta, S.: Stochastic p-bits for probabilistic spin logic. arXiv:1610.00377 [cond-mat.mes-hall] (2016)

  104. 104.

    Faria, R., Camsari, K.Y., Datta, S.: Low barrier nanomagnets as p-bits for spin logic. arXiv preprint arXiv:1611.05477 (2016)

  105. 105.

    Sutton, B., Camsari, K.Y., Behin-Aein, B., Datta, S.: Intrinsic optimization using stochastic nanomagnets. arXiv preprint arXiv:1608.00679 (2016)

  106. 106.

    Borders, W.A., Akima, H., Fukami, S., Moriya, S., Kurihara, S., Horio, Y., Sato, S., Ohno, H.: Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10(1), 013007 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with Prof. W. H. Butler on Heusler studies, I. Rungger and S. Sanvito from the Smeagol team for ab-initio transport calculations, P. Visscher and B. Behin-Aein on Fokker–Planck and write error study in STT-MRAM. We also acknowledge the support from Oak Ridge National Laboratory (ORNL) center for nanophase materials sciences (CNMS) on computational resources. This work was funded over the years by DARPA, NSF-SHF, SRC-NRI and IBM Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunkun Xie.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10825-018-1145-5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ma, J., Ganguly, S. et al. From materials to systems: a multiscale analysis of nanomagnetic switching. J Comput Electron 16, 1201–1226 (2017). https://doi.org/10.1007/s10825-017-1054-z

Download citation

Keywords

  • Nanomagnetics
  • STT-MRAM
  • Computational spintronics
  • Spin logic
  • Neuromorphic spintronics