Journal of Computational Electronics

, Volume 16, Issue 4, pp 1201–1226 | Cite as

From materials to systems: a multiscale analysis of nanomagnetic switching

  • Yunkun XieEmail author
  • Jianhua Ma
  • Samiran Ganguly
  • Avik W. Ghosh
S.I.: Computational Electronics of Emerging Memory Elements


With the increasing demand for low-power electronics, nanomagnetic devices have emerged as strong potential candidates to complement present day transistor technology. A variety of novel switching effects such as spin torque and giant spin Hall offer scalable ways to manipulate nanosized magnets. However, the low intrinsic energy cost of switching spins is often compromised by the energy consumed in the overhead circuitry in creating the necessary switching fields. Scaling brings in added concerns such as the ability to distinguish states (readability) and to write information without spontaneous backflips (reliability). A viable device must ultimately navigate a complex multi-dimensional material and design space defined by volume, energy budget, speed, and a target read–write–retention error. In this paper, we review the major challenges facing nanomagnetic devices and present a multiscale computational framework to explore possible innovations at different levels (material, device, or circuit), along with a holistic understanding of their overall energy delay–reliability trade-off.


Nanomagnetics STT-MRAM Computational spintronics Spin logic Neuromorphic spintronics 



We acknowledge discussions with Prof. W. H. Butler on Heusler studies, I. Rungger and S. Sanvito from the Smeagol team for ab-initio transport calculations, P. Visscher and B. Behin-Aein on Fokker–Planck and write error study in STT-MRAM. We also acknowledge the support from Oak Ridge National Laboratory (ORNL) center for nanophase materials sciences (CNMS) on computational resources. This work was funded over the years by DARPA, NSF-SHF, SRC-NRI and IBM Fellowship.


  1. 1.
    Ghosh, A.W.: Nanoelectronics: a molecular view. World Scientific Series in Nanoscience and Nanotechnology. World Scientific Publishing Company Pte Limited (2016)Google Scholar
  2. 2.
    Salahuddin, S., Supriyo, D.: Interacting systems for self-correcting low power switching. Appl. Phys. Lett. 90(9), 093503 (2007)CrossRefGoogle Scholar
  3. 3.
    Huai, Y.: Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull. 18(6), 33–40 (2008)Google Scholar
  4. 4.
    Grupp, L.M., Davis, J.D., Swanson, S.: The bleak future of NAND flash memory. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, pp. 2–2. USENIX Association (2012)Google Scholar
  5. 5.
    Clarke, P.: Everspin samples 256Mbit MRAMs, 1Gbit coming. EE News Europe. (2016)
  6. 6.
    GLOBALFOUNDRIES: GLOBALFOUNDRIES Launches Embedded MRAM on 22FDX\(^{\textregistered }\) Platform. (2016)
  7. 7.
    Manners, D.: Everspin and GloFo to put embedded MRAM on SoCs. Electronics Weekly. (2016)
  8. 8.
    Coughlin, T.: Memories of the future. Forbes. (2016)
  9. 9.
    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004)CrossRefGoogle Scholar
  10. 10.
    Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MGO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)CrossRefGoogle Scholar
  11. 11.
    Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300 K by suppression of ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93(8), 082508 (2008)CrossRefGoogle Scholar
  12. 12.
    Khalili-Amiri, P., Zeng, Z.M., Upadhyaya, P., Rowlands, G., Zhao, H., Krivorotov, I.N., Wang, J.-P., Jiang, H.W., Katine, J.A., Langer, J., et al.: Low write-energy magnetic tunnel junctions for high-speed spin-transfer-torque MRAM. IEEE Electron Device Lett. 32(1), 57–59 (2011)CrossRefGoogle Scholar
  13. 13.
    Mather, P.G., Read, J.C., Buhrman, R.A.: Disorder, defects, and band gaps in ultrathin (001) MGO tunnel barrier layers. Phys. Rev. B 73(20), 205412 (2006)CrossRefGoogle Scholar
  14. 14.
    Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)CrossRefGoogle Scholar
  15. 15.
    Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, Sl, Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010)CrossRefGoogle Scholar
  16. 16.
    Nakayama, M., Kai, T., Shimomura, N., Amano, M., Kitagawa, E., Nagase, T., Yoshikawa, M., Kishi, T., Ikegawa, S., Yoda, H.: Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 103(7), 07A710 (2008)CrossRefGoogle Scholar
  17. 17.
    Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., et al.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009)CrossRefGoogle Scholar
  18. 18.
    Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T., Suzuki, Y.: Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96(2), 022506 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, W.-G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2012)CrossRefGoogle Scholar
  20. 20.
    Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R.A., et al.: Spin transfer torques in MnSi at ultralow current densities. Science 330(6011), 1648–1651 (2010)Google Scholar
  21. 21.
    Liu, L., Moriyama, T., Ralph, D.C., Buhrman, R.A.: Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett. 106(3), 036601 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555–559 (2012)CrossRefGoogle Scholar
  23. 23.
    Pai, C.-F., Liu, L., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin transfer torque devices utilizing the giant spin hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012)CrossRefGoogle Scholar
  24. 24.
    Mellnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., et al.: Spin-transfer torque generated by a topological insulator. Nature 511(7510), 449–451 (2014)CrossRefGoogle Scholar
  25. 25.
    Masum Habib, K.M., Sajjad, R.N., Ghosh, A.W.: Chiral tunneling of topological states: towards the efficient generation of spin current using spin-momentum locking. Phys. Rev. Lett. 114(17), 176801 (2015)CrossRefGoogle Scholar
  26. 26.
    Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N., et al.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13(4), 345–351 (2014)CrossRefGoogle Scholar
  27. 27.
    Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., et al.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516(7531), 370–373 (2014)CrossRefGoogle Scholar
  28. 28.
    DSouza, N., Fashami, M.S., Bandyopadhyay, S., Atulasimha, J.: Experimental clocking of nanomagnets with strain for ultralow power boolean logic. Nano Lett. 16(2), 1069–1075 (2016)CrossRefGoogle Scholar
  29. 29.
    Xie, Y., Rungger, I., Munira, K., Stamenova, M., Sanvito, A., Ghosh, A.W.: Spin transfer torque: a multiscale picture. In: Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, p. 91 (2016)Google Scholar
  30. 30.
    White, J.S., Levatić, I., Omrani, A.A., Egetenmeyer, N., Prša, K., Zivković, I., Gavilano, J.L., Kohlbrecher, J., Bartkowiak, M., Berger, H., Rønnow, H.M.: Electric field control of the skyrmion lattice in Cu2OSeO3. J. Phys. Condens. Matter Inst. Phys. J. 24, 432201 (2012)CrossRefGoogle Scholar
  31. 31.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic heusler alloys. Phys. Rev. B 66, 134428 (2002)CrossRefGoogle Scholar
  32. 32.
    Youn, S.J., Min, B.I.: Effects of the spin-orbit interaction in heusler compounds: electronic structures and fermi surfaces of nimnsb and ptmnsb. Phys. Rev. B 51, 10436–10442 (1995)CrossRefGoogle Scholar
  33. 33.
    Toboła, J., Pierre, J.: Electronic phase diagram of the XTZ (X=Fe Co, Ni; T=Ti, V, Zr, Nb, Mn; Z=Sn, Sb) semi-Heusler compounds. J. Alloys Compd. 296(1–2), 243–252 (2000)CrossRefGoogle Scholar
  34. 34.
    Kandpal, H.C., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39(5), 776 (2006)CrossRefGoogle Scholar
  35. 35.
    Galanakis, I., Mavropoulos, Ph, Dederichs, P.H.: Electronic structure and slater-pauling behaviour in half-metallic heusler alloys calculated from first principles. J. Phys. D Appl. Phys. 39(5), 765 (2006)CrossRefGoogle Scholar
  36. 36.
    William, H., Butler, C., Mewes, K.A., Liu, C., Xu, T.: Rational design of half-metallic heterostructures. arXiv preprint arXiv:1103.3855 (2011)
  37. 37.
    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)CrossRefGoogle Scholar
  38. 38.
    Slater, J.C., Koster, G.F.: Simplified LACO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)CrossRefzbMATHGoogle Scholar
  39. 39.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)CrossRefGoogle Scholar
  40. 40.
    Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C.: The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015)CrossRefGoogle Scholar
  41. 41.
    Akbarzadeh, A.R., Ozoli, V., Wolverton, C.: First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system. Adv. Mater. 19(20), 3233–3239 (2007)CrossRefGoogle Scholar
  42. 42.
    Kirklin, S., Meredig, B., Wolverton, C.: High-throughput computational screening of new Li-ion battery anode materials. Adv. Energy Mater. 3(2), 252–262 (2013)CrossRefGoogle Scholar
  43. 43.
    Hanssen, K.E.H.M., Mijnarends, P.E., Rabou, L.P.L.M., Buschow, K.H.J.: Positron-annihilation study of the half-metallic ferromagnet nimnsb: Experiment. Phys. Rev. B 42, 1533–1540 (1990)CrossRefGoogle Scholar
  44. 44.
    Terada, M., Endo, K., Fujita, Y., Kimura, R.: Magnetic properties of Clb compounds; CoVSb, CoTiSb and NiTiSb. J. Phys. Soc. Jpn. 32(1), 91–94 (1972)CrossRefGoogle Scholar
  45. 45.
    Heyne, L., Igarashi, T., Kanomata, T., Neumann, K.-U., Ouladdiaf, B., Ziebeck, K.R.A.: Atomic and magnetic order in the weak ferromagnet CoVSb: is it a half-metallic ferromagnet? J. Phys. Condens. Matter 17(33), 4991 (2005)CrossRefGoogle Scholar
  46. 46.
    Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63(5), 054416 (2001)CrossRefGoogle Scholar
  47. 47.
    Nikolaev, K., Kolbo, P., Pokhil, T., Peng, X., Chen, Y., Ambrose, T., Mryasov, O.: All-Heusler alloy current-perpendicular-to-plane giant magnetoresistance. Appl. Phys. Lett. 94(22), 222501 (2009)CrossRefGoogle Scholar
  48. 48.
    Li, S., Takahashi, Y.K., Sakuraba, Y., Chen, J., Furubayashi, T., Mryasov, O., Faleev, S., Hono, K.: Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve. J. Appl. Phys. 119(9), 093911 (2016)CrossRefGoogle Scholar
  49. 49.
    Azadani, J.G., Munira, K., Romero, J., Ma, J., Sivakumar, C., Ghosh, A.W., Butler, W.H.: Anisotropy in layered half-metallic Heusler alloy superlattices. J. Appl. Phys. 119(4), 043904 (2016)CrossRefGoogle Scholar
  50. 50.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  51. 51.
    Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73(8), 085414 (2006)CrossRefGoogle Scholar
  52. 52.
    Theodonis, I., Kioussis, N., Kalitsov, A., Chshiev, M., Butler, W.H.: Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett. 97(23), 237205 (2006)CrossRefGoogle Scholar
  53. 53.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-n materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002)CrossRefGoogle Scholar
  54. 54.
    Yanik, A.A., Klimeck, G., Datta, S.: Quantum transport with spin dephasing: a nonequlibrium Green’s function approach. Phys. Rev. B Condens. Matter Mater. Phys. 76(4), 1–11 (2007)CrossRefGoogle Scholar
  55. 55.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)CrossRefGoogle Scholar
  56. 56.
    Behtash, B.-A., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nano 5(4), 266–270 (2010)CrossRefGoogle Scholar
  57. 57.
    Brown Jr., W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677 (1963)CrossRefGoogle Scholar
  58. 58.
    Butler, W.H., Mewes, T., Mewes, C.K.A., Visscher, P.B., Rippard, W.H., Russek, S.E., Heindl, R.: Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Magn. 48(12), 4684–4700 (2012)CrossRefGoogle Scholar
  59. 59.
    Xie, Y., Behin-Aein, B., Ghosh, A.W.: Fokker planck study of parameter dependence on write error slope in spin-torque switching. IEEE Trans. Electron Devices 64(1), 319–324 (2017)CrossRefGoogle Scholar
  60. 60.
    Liu, H., Bedau, D., Sun, J.Z., Mangin, S., Fullerton, E.E., Katine, J.A., Kent, A.D.: Dynamics of spin torque switching in all-perpendicular spin valve nanopillars. J. Magn. Magn. Mater. 358, 233–258 (2014)CrossRefGoogle Scholar
  61. 61.
    Liu, H., Bedau, D., Backes, D., Katine, J.A., Langer, J., Kent, A.D.: Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010)CrossRefGoogle Scholar
  62. 62.
    Shaw, J.M., Nembach, H.T., Weiler, M., Silva, T.J., Schoen, M., Sun, J.Z., Worledge, D.C.: Perpendicular magnetic anisotropy and easy cone state in Ta/Co60Fe20B20/MgO. IEEE Magn. Lett. 6, 1–4 (2015)CrossRefGoogle Scholar
  63. 63.
    Sun, J.Z., Robertazzi, R.P., Nowak, J., Trouilloud, P.L., Hu, G., Abraham, D.W., Gaidis, M.C., Brown, S.L., Sullivan, E.J.O., Gallagher, W.J., et al.: Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84(6), 064413 (2011)CrossRefGoogle Scholar
  64. 64.
    Finocchio, G., Azzerboni, B., Fuchs, G.D., Buhrman, R.A., Torres, L.: Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions. J. Appl. Phys. 101(6), 063914 (2007)CrossRefGoogle Scholar
  65. 65.
    Munira, K., Visscher, P.B.: Calculation of energy-barrier lowering by incoherent switching in spin-transfer torque magnetoresistive random-access memory. J. Appl. Phys. 117(17), 17B710 (2015)CrossRefGoogle Scholar
  66. 66.
    Johnson, M.T., Bloemen, P.J.H., Den Broeder, F.J.A., De Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409 (1996)CrossRefGoogle Scholar
  67. 67.
    Sun, J.: Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62(1), 570–578 (2000)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Dyakonov, M.I., Perel, V.I.: Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971)CrossRefGoogle Scholar
  69. 69.
    Vanessa, S., Myers, R.C., Kato, Y.K., Lau, W.H., Gossard, A.C., Awschalom, D.D.: Spatial imaging of the spin hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1(1), 31–35 (2005)CrossRefGoogle Scholar
  70. 70.
    Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9(3), 230–234 (2010)CrossRefGoogle Scholar
  71. 71.
    Hong, S., Sayed, S., Datta, S.: Spin circuit model for 2d channels with spin-orbit coupling. Sci. Rep. 6 (2016)Google Scholar
  72. 72.
    Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of feco using voltage pulses. Nat. Mater. 11(1), 39–43 (2012)CrossRefGoogle Scholar
  73. 73.
    Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H.: Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104(21), 212406 (2014)CrossRefGoogle Scholar
  74. 74.
    Pertsev, N.A.: Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy. Sci. Rep. 3, 2757 (2013)CrossRefGoogle Scholar
  75. 75.
    Duan, C.-G., Velev, J.P., Sabirianov, R.F., Zhu, Z., Chu, J., Jaswal, S.S., Tsymbal, E.Y.: Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008)CrossRefGoogle Scholar
  76. 76.
    Camsari, K.Y., Pervaiz, A.Z., Faria, R., Marinero, E.E., Datta, S.: Ultrafast spin-transfer-torque switching of synthetic ferrimagnets. IEEE Magn. Lett. 7, 1–5 (2016)CrossRefGoogle Scholar
  77. 77.
    Wang, M., Tan, G.-L., Zhang, Q.: Multiferroic properties of nanocrystalline PbTiO3 ceramics. J. Am. Ceram. Soc. 93(8), 2151–2154 (2010)CrossRefGoogle Scholar
  78. 78.
    Ederer, C., Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)CrossRefGoogle Scholar
  79. 79.
    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W., Binek, C.: Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94(11), 117203 (2005)CrossRefGoogle Scholar
  80. 80.
    Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9(9), 756–761 (2010)CrossRefGoogle Scholar
  81. 81.
    Ganguly, S., Camsari, K.Y., Datta, S.: Evaluating spintronic devices using the modular approach. IEEE J. Explor. Solid-State Comput. Devices Circuits 2, 51–60 (2016)CrossRefGoogle Scholar
  82. 82.
    Albrecht, T.R., Bedau, D., Dobisz, E., Gao, H., Grobis, M., Hellwig, O., Kercher, D., Lille, J., Marinero, E., Patel, K., et al.: Bit patterned media at 1 Tdot/in 2 and beyond. IEEE Trans. Magn. 49(2), 773–778 (2013)CrossRefGoogle Scholar
  83. 83.
    Munira, K., Butler, W.H., Ghosh, A.W.: A quasi-analytical model for energy-delay-reliability tradeoff studies during write operations in a perpendicular STT-RAM cell. IEEE Trans. Electron Devices 59(8), 2221–2226 (2012)CrossRefGoogle Scholar
  84. 84.
    Camsari, K.Y., Ganguly, S., Datta, S.: Modular Approach to Spintronics. Sci. Rep. 5, 10571 (2015). doi: 10.1038/srep10571
  85. 85.
    Group: Modular Approach to SpintronicsGoogle Scholar
  86. 86.
    Datta, S., Diep, V.Q., Behin-Aein, B.: What constitutes a nanoswitch? A Perspective. arXiv:1404.2254 [cond-mat] (2014)
  87. 87.
    Zhu, J.G.J., Bromberg, D.M., Moneck, M., Sokalski, V., Pileggi, L.: mLogic: all spin logic device and circuits. In: 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S), pp. 1–2 (2015)Google Scholar
  88. 88.
    Datta, S., Salahuddin, S., Behin-Aein, B.: Non-volatile spin switch for Boolean and non-Boolean logic. Appl. Phys. Lett. 101(25), 252411 (2012)CrossRefGoogle Scholar
  89. 89.
    Jaiswal, A., Roy, K.: MESL: proposal for a non-volatile cascadable magneto-electric spin logic. Sci. Rep. 7 (2017)Google Scholar
  90. 90.
    Mankalale, M.G., Liang, Z., Smith, A.K., Mahendra, D.C., Jamali, M., Wang, J.-P., Sapatnekar, S.S.: A fast magnetoelectric device based on current-driven domain wall propagation. In: 74th Annual Device Research Conference (DRC), pp. 1–2. IEEE (2016)Google Scholar
  91. 91.
    D’Souza, N., Atulasimha, J., Bandyopadhyay, S.: Four-state nanomagnetic logic using multiferroics. J. Phys. D Appl. Phys. 44(26), 265001 (2011)CrossRefGoogle Scholar
  92. 92.
    Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)CrossRefGoogle Scholar
  93. 93.
    Nikonov, D.E., Young, I.A.: Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015)Google Scholar
  94. 94.
    Ganguly, S., Camsari, K.Y., Datta, S.: Spin switch model. nanoHUB (2014). doi: 10.4231/D3C824F8D
  95. 95.
    Ganguly, S.: Spintronic Device Modeling and Evaluation Using Modular Approach to Spintronics. Ph.D. thesis, Purdue University (2016)Google Scholar
  96. 96.
    Diep, V.Q., Sutton, B., Behin-Aein, B., Datta, S.: Spin switches for compact implementation of neuron and synapse. Appl. Phys. Lett. 104(22), 222405 (2014)CrossRefGoogle Scholar
  97. 97.
    Sharad, M., Fan, D., Roy, K.: Spin-neurons: a possible path to energy-efficient neuromorphic computers. J. Appl. Phys. 114(23), 234906 (2013)CrossRefGoogle Scholar
  98. 98.
    Ramasubramanian, S.G., Venkatesan, R., Sharad, M., Roy, K., Raghunathan, A.: SPINDLE: SPINtronic deep learning engine for large-scale neuromorphic computing. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design, ISLPED ’14, New York, NY, USA, pp. 15–20. ACM (2014)Google Scholar
  99. 99.
    Mizrahi, A., Locatelli, N., Lebrun, R., Cros, V., Fukushima, A., Kubota, H., Yuasa, S., Querlioz, D., Grollier, J.: Controlling the phase locking of stochastic magnetic bits for ultra-low power computation. Sci. Rep. 6, 30535 (2016)CrossRefGoogle Scholar
  100. 100.
    Venkatesan, R., Venkataramani, S., Fong, X., Roy, K., Raghunathan, A.: Spintastic: spin-based stochastic logic for energy-efficient computing. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1575–1578 (2015)Google Scholar
  101. 101.
    Locatelli, N., Vincent, A.F., Mizrahi, A., Friedman, J.S., Vodenicarevic, D., Kim, J.-V., Klein, J.-O., Zhao, W., Grollier, J., Querlioz, D.: Spintronic devices as key elements for energy-efficient neuroinspired architectures. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE ’15, San Jose, CA, USA, pp. 994–999 (2015). EDA ConsortiumGoogle Scholar
  102. 102.
    Behin-Aein, B., Diep, V., Datta, S.: A building block for hardware belief networks. Sci. Rep. 6 (2016)Google Scholar
  103. 103.
    Camsari, K.Y., Faria R., Sutton, B.M., Datta, S.: Stochastic p-bits for probabilistic spin logic. arXiv:1610.00377 [cond-mat.mes-hall] (2016)
  104. 104.
    Faria, R., Camsari, K.Y., Datta, S.: Low barrier nanomagnets as p-bits for spin logic. arXiv preprint arXiv:1611.05477 (2016)
  105. 105.
    Sutton, B., Camsari, K.Y., Behin-Aein, B., Datta, S.: Intrinsic optimization using stochastic nanomagnets. arXiv preprint arXiv:1608.00679 (2016)
  106. 106.
    Borders, W.A., Akima, H., Fukami, S., Moriya, S., Kurihara, S., Horio, Y., Sato, S., Ohno, H.: Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10(1), 013007 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations