Journal of Computational Electronics

, Volume 16, Issue 3, pp 845–855 | Cite as

Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability

  • Amin BagheriEmail author
  • Mahboubeh Ranjbar
  • Saeed Haji-Nasiri
  • Sattar Mirzakuchaki


In order to analyse crosstalk delay and stability in single wall carbon nanotube bundle (SWCNT) interconnects, the time and frequency domain response are investigated in this paper. Based on the transmission line model and by using matrix formulation, we perform the Nyquist stability analysis to survey the dependence of the degree of relative stability for coupled SWCNT bundle interconnects. We present an exact transfer function formula for a SWCNT bundle and two coupled SWCNT bundle interconnects. The proposed model can be extended to coupled n bundled SWCNT interconnects. In order to demonstrate the crosstalk effects, we seek to compare the coupled SWCNT bundle interconnects with the SWCNT bundle interconnect. The results show that due to the capacitive and mutual inductive couplings between two SWCNT bundles, the stability of near-end output increases and the created undesirable voltage on the far-end output may reduce the stability and degrade logic. Also, it is observed that stability and switching delay of near-end output increases with increasing the interconnect length and diameter. Furthermore, maximum overshoot and switching delay of far-end output increases with length and diameter of interconnect. Also, as the parasitic coupling capacitance increases and the mutual inductance decreases, stability of near-end output increases whereas the stability of the far-end output decreases. Finally, compared to Advanced Design System results, the model exhibits an excellent accuracy.


Single wall carbon nanotubes (SWCNTs) Interconnects Transmission line model (TLM) Nyquist stability Step response Crosstalk 


  1. 1.
    Pu, S.N., Yin, W.Y., Mao, J.F., Liu, Q.H.: Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans. Electron Devices 56(4), 560–568 (2009)CrossRefGoogle Scholar
  2. 2.
    Roy, S., Dounavis, A.: Efficient delay and crosstalk modeling of RLC interconnects using delay algebraic equations. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 19(2), 342–346 (2011)CrossRefGoogle Scholar
  3. 3.
    Das, D., Rahaman, H.: Crosstalk overshoot/undershoot analysis and its impact on gate oxide reliability in multi-wall carbon nanotube interconnects. J. Comput. Electron. 10(4), 360–372 (2011)CrossRefGoogle Scholar
  4. 4.
    Sathyakam, P.U., Mallick, P.: Towards realisation of mixed carbon nanotube bundles as VLSI interconnects: a review. Nano Commun. Netw. 3(3), 175–182 (2012)CrossRefGoogle Scholar
  5. 5.
    Vyas, A.A., Zhou, C., Wilhite, P., Wang, P., Yang, C.Y.: Electrical properties of carbon nanotube via interconnects for 30 nm linewidth and beyond. Microelectron. Reliab. 61, 35–42 (2016)CrossRefGoogle Scholar
  6. 6.
    Rossi, D., Cazeaux, J.M., Metra, C., Lombardi, F.: Modeling crosstalk effects in CNT bus architectures. IEEE Trans. Nanotechnol. 6(2), 133–145 (2007)CrossRefGoogle Scholar
  7. 7.
    Nieuwoudt, A., Massoud, Y.: Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE Trans. Electron Devices 53(10), 2460–2466 (2006)CrossRefGoogle Scholar
  8. 8.
    Fathi, D., Forouzandeh, B.: A novel approach for stability analysis in carbon nanotube interconnects. IEEE Electron Device Lett. 30(5), 475–477 (2009)CrossRefGoogle Scholar
  9. 9.
    Das, D., Rahaman, H.: Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay. J. Comput. Electron. 11(4), 349–363 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, K., Tian, B., Zhu, X., Wang, F., Wei, J.: Crosstalk analysis of carbon nanotube bundle interconnects. Nanoscale Res. Lett. 7(1), 138 (2012)CrossRefGoogle Scholar
  11. 11.
    Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)CrossRefGoogle Scholar
  12. 12.
    Lu, Q., Zhu, Z., Yang, Y., Ding, R.: Analysis of propagation delay and repeater insertion in single-walled carbon nanotube bundle interconnects. Microelectron. J. 54, 85–92 (2016)CrossRefGoogle Scholar
  13. 13.
    Maffucci, A., Miano, G., Villone, F.: Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE Trans. Adv. Packaging 31(4), 692–699 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Giustiniani, A., Tucci, V., Zamboni, W.: Carbon nanotubes bundled interconnects: design hints based on frequency- and time-domain Crosstalk analyses. IEEE Trans. Electron Devices 58(8), 2702–2711 (2011)CrossRefGoogle Scholar
  15. 15.
    Haji-Nasiri, S., Faez, R., Moravvej-Farshi, M.K.: Stability analysis in multiwall carbon nanotube bundle interconnects. Microelectron. Reliab. 52(12), 3026–3034 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Naeemi, A., Meindl, J.D.: Performance modeling for single- and multi-wall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Devices 55, 2574–2582 (2008)CrossRefGoogle Scholar
  17. 17.
    Majumder, M.K., Pandya, N.D., Kaushik, B.K., Manhas, S.K.: Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Device Lett. 33(8), 1180–1182 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  19. 19.
    Majumder, M.K., Das, P.K., Kaushik, B.K.: Delay and crosstalk reliability issues in mixed MWCNT bundle interconnects. Microelectron. Reliab. 54(11), 2570–2577 (2014)CrossRefGoogle Scholar
  20. 20.
    Srivastava, N., Li, H., Kreupl, F., Banerjee, K.: On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8(4), 542–559 (2009)CrossRefGoogle Scholar
  21. 21.
    Liu, C., Cheng, H.-M.: Controlled growth of semiconducting and metallic single-wall carbon nanotubes. J. Am. Chemi. Soc. 138(21), 6690–6698 (2016)CrossRefGoogle Scholar
  22. 22.
    Hou, P.-X., Li, W.-S., Zhao, S.-Y., Li, G.-X., Shi, C., Liu, C., Cheng, H.-M.: Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8(7), 7156–7162 (2014)CrossRefGoogle Scholar
  23. 23.
    Harutyunyan, A.R., Chen, G., Paronyan, T.M., Pigos, E.M., Kuznetsov, O.A., Hewaparakrama, K., Kim, S.M., Zakharov, D., Stach, E.A., Sumanasekera, G.U.: Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326(5949), 116–120 (2009)CrossRefGoogle Scholar
  24. 24.
    Davis, J.A., Meindl, J.D.: Compact distributed RLC interconnect models-Part II: coupled line transient expressions and peak crosstalk in multilevel networks. IEEE Trans. Electron Devices 47(11), 2078–2087 (2000)CrossRefGoogle Scholar
  25. 25.
    Chandrasekhar, P., Rao, R.: Computationally efficient analytical crosstalk noise model in RC interconnects. Int. J. Math. Models Methods Appl. Sci. 1(2), 35–45 (2007)Google Scholar
  26. 26.
    Chowdhury, M., Ismail, Y.: Behavior and analysis of deep sub-micron integrated circuits including self and mutual inductances. Circuits Syst. Signal Process. 27(1), 23–34 (2008)CrossRefGoogle Scholar
  27. 27.
    Xiao-Chun, L., Jun-Fa, M., Hui-Fen, H.: Accurate analysis of interconnect trees with distributed RLC model and moment matching. IEEE Trans. Microw. Theory Tech. 52(9), 2199–2206 (2004)CrossRefGoogle Scholar
  28. 28.
    Akbari, L., Faez, R.: Crosstalk Stability Analysis in Multilayer Graphene Nanoribbon Interconnects. Circuits Sys. Signal Process. 32(6), 2653–2666 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bagheri, A., Ranjbar, M., Haji-Nasiri, S., Mirzakuchaki, S.: Crosstalk bandwidth and stability analysis in graphene nanoribbon interconnects. Microelectron. Reliab. 55(8), 1262–1268 (2015)CrossRefGoogle Scholar
  30. 30.
    Qian, L., Xia, Y., Ge, S., Ye, Y., Wang, J.: Stability analysis for coupled multilayer graphene nanoribbon interconnects. Microelectron. J. 58, 32–38 (2016)CrossRefGoogle Scholar
  31. 31.
    Das, D., Rahaman, H.: Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans. Nanotechnol. 10(6), 1362–1370 (2011)CrossRefGoogle Scholar
  32. 32.
    Sahoo, M., Rahaman, H.: Modeling and analysis of crosstalk induced overshoot/undershoot effects in multilayer graphene nanoribbon interconnects and its impact on gate oxide reliability. Microelectron. Reliab. 63, 231–238 (2016)CrossRefGoogle Scholar
  33. 33.
    Kumar, V.R., Kaushik, B.K., Patnaik, A.: Improved crosstalk noise modeling of MWCNT interconnects using FDTD technique. Microelectron. J. 46(12), 1263–1268 (2015)CrossRefGoogle Scholar
  34. 34.
    Ogata, K.: Modern Control Engineering. Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  35. 35.
    Salahuddin, S., Lundstrom, M., Datta, S.: Transport effects on signal propagation in quantum wires. IEEE Trans. Electron Devices 52(8), 1734–1742 (2005)CrossRefGoogle Scholar
  36. 36.
    Kim, W., Javey, A., Tu, R., Cao, J., Wang, Q., Dai, H.: Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87(17), 173101 (2005)CrossRefGoogle Scholar
  37. 37.
    Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconnects for VLSI applications. Paper presented at the Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design, San Jose, CA (2005)Google Scholar
  38. 38.
    Rai, M.K., Kaushik, B.K., Sarkar, S.: Thermally aware performance analysis of single-walled carbon nanotube bundle as VLSI interconnects. J. Comput. Electron. 15(2), 407–419 (2016)CrossRefGoogle Scholar
  39. 39.
    Rai, M.K., Sarkar, S.: Influence of distance between adjacent tubes on SWCNT bundle interconnect delay and power dissipation. J. Compu. Electron. 12(4), 796–802 (2013)CrossRefGoogle Scholar
  40. 40.
    Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-Dependent Modeling and Crosstalk Analysis in Mixed Carbon Nanotube Bundle Interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)CrossRefGoogle Scholar
  41. 41.
    Singh, K., Raj, B.: Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes. J. Mater. Sci. Mater. Electron. 26(8), 6134–6142 (2015)Google Scholar
  42. 42.
    International Technology Roadmap for Semiconductors (ITRS) (2009).

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amin Bagheri
    • 1
    Email author
  • Mahboubeh Ranjbar
    • 2
  • Saeed Haji-Nasiri
    • 2
  • Sattar Mirzakuchaki
    • 3
  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran
  3. 3.Electronic Research Center, School of Electrical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations