Skip to main content
Log in

Influence of oblique magnetic field on the impact ionization rate of charge carriers in semiconductors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, an analytical model has been presented to study the influence of magnetic field on the impact ionization rate of charge carriers in semiconductors. The magnetic field is supposed to be applied along the oblique direction with respect to the direction of applied electric field. Numerical calculations have been carried out by using the comprehensive analytic expression of ionization rate of charge carriers formulated by the authors, in order to study the effect of oblique magnetic field on the ionization rate of electrons and holes moving under a steady electric field in 4H-SiC. Results show that the application of nonzero steady magnetic field in oblique direction leads to significant reduction in ionization rates. Moreover, the above-mentioned magnetic field-induced reduction in ionization rates is found to be maximum when the steady magnetic field is applied along the normal direction with respect to the external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolff, P.A.: Theory of electron multiplication silicon and germanium. Phys. Rev. 95, 1415 (1954)

    Article  Google Scholar 

  2. Shotckey, W.: Problems related to \(p\)\(n\) junctions in silicon. Solid-State Electron. 2, 35–67 (1961)

    Article  Google Scholar 

  3. Moll, J.L., Meyer, N.I.: Secondary multiplication in silicon. Solid-State Electron. 3, 155–158 (1961)

    Article  Google Scholar 

  4. Moll, J.L., Overstraeten, R.V.: Charge multiplication in silicon \(p\)\(n\) junctions. Solid-State Electron. 6, 147–157 (1963)

    Article  Google Scholar 

  5. Baraff, G.A.: Distribution functions and ionization rates for hot electrons in semiconductors. Phys. Rev. 128, 2507 (1962)

    Article  MATH  Google Scholar 

  6. Ghosh, R., Roy, S.K.: Effect of electron–electron interactions on the ionization rate of charge carriers in semiconductors. Solid-State Electron. 18, 945–948 (1975)

    Article  Google Scholar 

  7. Singh, S.R., Pal, B.B.: Ionization rates of electrons and holes in GaAs considering electron–electron and hole–hole interactions. IEEE Trans. Electron. Device 32(3), 599–604 (1985)

    Article  Google Scholar 

  8. Acharyya, A., Banerjee, J.P.: A generalized analytical model based on multistage scattering phenomena for estimating the impact ionization rate of charge carriers in semiconductors. J. Comput. Electron. 13, 917–924 (2014)

    Article  Google Scholar 

  9. Acharyya, A., Chatterjee, S., Das, A., Banerjee, A., Pandey, A.R., Yadav, A., Banerjee, J.P.: Additional confirmation of a generalized analytical model based on multistage scattering phenomena to evaluate the ionization rates of charge carriers in semiconductors. J. Comput. Electron. 15, 34–39 (2016)

    Article  Google Scholar 

  10. Kogan, Sh M., Shadrin, V.D., Shul’man, A.Ya.: Electron-electron collisions in an ultra-quantizing magnetic field. Sov. Phys.-Solid State 4, 1813–1819 (1963)

    Google Scholar 

  11. Budd, H.F.: Transport theory in strong magnetic fields. Phys. Rev. 175, 241–250 (1968)

    Article  Google Scholar 

  12. Calecki, D.: Phenomenes galvanomagnetiques non lineaires B-theorie quantique. J. Phys. Chem. Solids 32, 1835–1862 (1971)

    Article  Google Scholar 

  13. Cassiday, D.R., Spector, H.N.: Nonohmic behavior of semiconductors in a quantizing magnetic field. J. Phys. Chem. Solids 35(8), 957–965 (1974)

    Article  Google Scholar 

  14. Ting, C.S., Ying, S.C., Quinn, J.J.: Theory of dynamical conductivity of interacting electrons. Phys. Rev. B 14, 4439–4446 (1976)

    Article  Google Scholar 

  15. Barker, J.R.: Hot electron quantum magneto-transport. Solid-State Electron. 21(1), 197–214 (1978)

    Article  Google Scholar 

  16. Lei, X.L., Cai, W., Ting, C.S.: Balance equations in nonlinear electronic transport for electron–phonon-impurity systems in the presence of crossed electric and magnetic fields. J. Phys. C: Solid State Phys. 18(22), 4315–4326 (1985)

    Article  Google Scholar 

  17. Banerjee, P., Acharyya, A., Biswas, A., Bhattacharjee, A.K.: Effect of magnetic field on the RF performance of millimeter-wave IMPATT source. J. Comput. Electron. 15, 210–221 (2016)

    Article  Google Scholar 

  18. Bandyopadhyay, P.K., Chakraborty, S., Biswas, A., Acharyya, A., Bhattacharjee, A.K.: Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier–carrier interactions. J. Comput. Electron. 15, 646–656 (2016)

    Article  Google Scholar 

  19. Yoder, P.D., Natoli, V.D., Martin, R.M.: Ab initio analysis of the electron–phonon interaction in silicon. J. Appl. Phys. 73, 4378 (1993)

  20. Kachlishvili, Z.S.: Galvanomagnetic and recombination effects in semiconductors in a strong electric field. Phys. Status Solidi (a) 33, 15–51 (1976)

    Article  Google Scholar 

  21. Akkerman, A., Murat, M.: Electron–phonon interactions in silicon: mean free paths, related distributions and transport characteristics. Nucl. Instrum. Methods Phys. Res. B 350, 49–54 (2015)

    Article  Google Scholar 

  22. Liao, B., Qiu, B., Zhou, J., Huberman, S., Esfarjani, K., Chen, G.: Significant reduction of lattice thermal conductivity by the Electron–Phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901-1–115901-6 (2015)

    Google Scholar 

  23. Straw, A., Vickers, A.J., Balkan, N., Roberts, J.S.: Acoustic and optical phonon energy relaxation in non-degenerate GaAs/AlGaAs multiple quantum wells. Superlattices Microstruct. 10(2), 203–206 (1991)

    Article  Google Scholar 

  24. Midday, S., Bhattacharya, D.P.: Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures. Phys. Scr. 83, 1–7 (2011)

    Article  Google Scholar 

  25. Pines, D.: Acollective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 92(3), 626–636 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frohlich, H., Paranjape, B.V.: Dielectric breakdown in solids. Proc. Phys. Soc. (London) B69, 21–23 (1956)

    Article  MATH  Google Scholar 

  27. Hall, E.: On a new action of magnetic on electric currents. Am. J. Math. 2, 287–292 (1879)

    Article  MATH  Google Scholar 

  28. Electronic Archive: New Semiconductor Materials, Characteristics and Properties. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html (2017). Accessed 10 Feb 2017

  29. Sankin, V.I.: Wannier–Stark localization in the natural superlattice of silicon carbide polytypes. Semiconductors 36(7), 717–739 (2002)

    Article  Google Scholar 

  30. Vassilevski, K.V., Zekentes, K., Zorenko, A.V., Romanov, L.P.: Experimental determination of electron drift velocity in 4H-SiC \(p^{+}-n-n^{+}\) avalanche diodes. IEEE Electron. Device Lett. 21, 485–487 (2000)

    Article  Google Scholar 

  31. Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Ionization rates and critical fields in 4H-silicon carbide. Appl. Phys. Lett. 71, 90–92 (1997)

    Article  Google Scholar 

  32. Burton, J.C., Sun, L., Long, F.H., Feng, Z.C., Ferguson, I.T.: First- and second-order Raman scattering from semi-insulating \(4H\)-SiC. Phys. Rev. B 59(11), 7282–7284 (1999)

    Article  Google Scholar 

  33. Matulionis, A., Liberis, J., Matulioniene, I., Cha, H.Y., Eastman, L.F., Spencer, M.G.: Hot-phonon temperature and lifetime in biased 4H-SiC. J. Appl. Phys. 96(11), 6439–6444 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Cooch Behar Government Engineering College, WB, India, for providing excellent research facilities for carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Chatterjee, D. & Acharyya, A. Influence of oblique magnetic field on the impact ionization rate of charge carriers in semiconductors. J Comput Electron 16, 503–513 (2017). https://doi.org/10.1007/s10825-017-1014-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1014-7

Keywords

Navigation