Advertisement

Journal of Computational Electronics

, Volume 16, Issue 2, pp 419–430 | Cite as

Stochastic model for action potential simulation including ion shot noise

  • Beatriz G. Vasallo
  • Fabio Galán-Prado
  • Javier Mateos
  • Tomás González
  • Sara Hedayat
  • Virginie Hoel
  • Alain Cappy
Article

Abstract

Development of bioinspired devices for energy-efficient computing requires numerical models that can reproduce the global electrical behavior of neurons. We present herein a stochastic model based on the Monte Carlo technique that can reproduce the steady state and the action potential in neurons in terms of the probabilities for different ions to cross the cell membrane. Gating channels for sodium and potassium cations and leakage channels are taken into account following the Hodgkin–Huxley equations in a first stage. We then expand the model to include the time-dependent ion concentrations in the intra- and extracellular space and the related Nernst potentials, and the existence of ion pumps to equilibrate the steady-state currents. The model allows monitoring of the random passage of ions across a biological membrane, and thus includes the influence of ion shot noise. For small membrane areas, results evidence that, when considered alone, shot noise has a discernible effect on spiking in a wide range of excitation currents, not only by leading to the onset of spikes but also by inhibiting their appearance.

Keywords

Monte Carlo technique Action potential Cell membranes Ion shot noise 

References

  1. 1.
    Dennard, R.H., Gaesslen, F.H., Yu, H.-N., Rideovt, V.L., Bassous, E., Leblanc, A.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits SC–9, 256–268 (1974)CrossRefGoogle Scholar
  2. 2.
    Eisenberg, B.: Ion channels as devices. J. Comput. Electron. 2, 245–249 (2003)CrossRefGoogle Scholar
  3. 3.
    Shepherd, G.M. (ed.): Foundations of the Neuron Doctrine. Oxford Univ. Press, New York (1991)Google Scholar
  4. 4.
    Bear, M.F., Paradiso, M.A., Connors, B.W.: Neuroscience, Lippincott Willians & Wilkins, Philadelphia (2006). ISBN: 9780781760034Google Scholar
  5. 5.
    Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101(1-20) (2011)Google Scholar
  6. 6.
    Kaneko, Y., Nishitani, Y., Ueda, M.: Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron. Dev. 61, 2827–2833 (2014)CrossRefGoogle Scholar
  7. 7.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  8. 8.
    Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training andoperation of an integrated neuromorphic network based on metal-oxide memristors. Nature 512, 61–64 (2015)CrossRefGoogle Scholar
  9. 9.
    Romeo, A., Dimonte, A., Tarabella, G., D’Angelo, P., Erokhin, V., Iannotta, S.: A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL Mater. 3, 014909(1-6) (2015)CrossRefGoogle Scholar
  10. 10.
    Chua, L.: Memristor, Hodgkin–Huxley and edge of chaos. IOP Nanotechnol. 24, 383001(1-14) (2013)Google Scholar
  11. 11.
    Chein, W.R., Midtgaard, J., Shepherd, G.M.: Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278, 463–467 (1997)CrossRefGoogle Scholar
  12. 12.
    Alle, H., Roth, A., Geiger, J.R.P.: Energy efficient action potentials in hippocampal mossy fibers. Science 325, 1405–1408 (2013)CrossRefGoogle Scholar
  13. 13.
    Toghraee, R., Mashl, R.J., Lee, I.K., Jakobsson, E., Ravaioli, U.: Simulation of charge transport in ion channels and nanopores with anisotropic permittivity. J. Comput. Electron. 8, 98–109 (2009)CrossRefGoogle Scholar
  14. 14.
    Van der Straaten, T.A., Kathawala, G., Trellakis, A., Eisengerg, R.S., Ravaioli, U.: BioMOCA—A Botzmann transport Monte Carlo model for ion channel simulation. Mol. Simul. 31, 151–171 (2005)CrossRefGoogle Scholar
  15. 15.
    Hwang, H., Schatz, G.C., Ratner, M.A.: Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system. J. Chem. Phys. 127, 024706(1-10) (2007)Google Scholar
  16. 16.
    Corry, B., Hoyles, M., Allen, T.W., Walker, M., Kuyucak, S., Chung, S-Ho: Reservoir boundaries in brownian dynamics simulations of ion channels. Biophys. J. 82, 1975–1984 (2002)CrossRefGoogle Scholar
  17. 17.
    Boda, D., Busath, D.D., Eisenberg, B., Henderson, D., Nonner, W.: Monte Carlo simulations of ion selectivity in a biological Na channel: charge-space competition. Phys. Chem. Chem. Phys. 4, 5154–5160 (2002)CrossRefGoogle Scholar
  18. 18.
    Boda, D., Henderson, D., Busath, D.D.: Monte Carlo study of the selectivity of calcium channels: improved geometrical model. Mol. Phys. 1000, 2361–2368 (2002)CrossRefGoogle Scholar
  19. 19.
    Valent, I., Neogrády, P., Schreiber, I., Marek, M.: Numerical solutions of the full set of the time-dependent Nernst-Planck and Poisson equations modeling electrodiffusion in a simple ion channel. J. Comput. Interdisciplin. Sci. 3, 65–76 (2012)Google Scholar
  20. 20.
    Chung, S.-H., Kuyucak, S.: Recent advances in ion channel research. Biochim. Biophys. Acta 1565, 267–286 (2002)Google Scholar
  21. 21.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRefGoogle Scholar
  22. 22.
    Hübel, N., Schöll, E., Dahlem, M.A.: Bistable dynamics underlying excitability of ion homeostasis in neuron models. PLOS Comput. Biol. 10(5), e1003551(1-15) (2014)CrossRefGoogle Scholar
  23. 23.
    Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nature Rev. 9, 292–303 (2008)CrossRefGoogle Scholar
  24. 24.
    Schmidt, G., Goychuk, I., Hänggi, P.: Channel noise and synchronization in excitable membranes. Phys. A 325, 165–175 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Adair, R.K.: Noise and stochastic resonance in voltage-gated ion channels. PNAS 100, 12099–12104 (2003)CrossRefGoogle Scholar
  26. 26.
    Faisal, A.A., White, J.A., Laughlin, S.B.: Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr. Biol. 15, 1143–1149 (2005)CrossRefGoogle Scholar
  27. 27.
    Läuger, P.: Shot noise in ion channels. Biochim. Biophys. Acta 413, 1–10 (1975)CrossRefGoogle Scholar
  28. 28.
    Brunetti, R., Affinito, F., Jacoboni, C., Piccinini, E., Rudan, M.: Shot noise in single open ion channels: A computational approach based on atomistic simulations. J. Comput. Electron. 6, 391–394 (2007)CrossRefGoogle Scholar
  29. 29.
    Schroeder, I., Hansen, U.-P.: Interference of shot noise of open-channel current with analysis of fast gating: patchers do not (yet) have to care. J. Membrane Biol. 229, 153–163 (2009)CrossRefGoogle Scholar
  30. 30.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolutions of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  32. 32.
    Cannon, R.C., O’Donnel, C., Nolan, M.: Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLOS Comput. Biol. 6, e1000886(1-18) (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Huang, Y., Rüdiger, S., Shuai, J.: Accurate Langevin approaches to simulate Markovian channel dynamics. Phys. Biol. 12, 061001(1-22) (2015)CrossRefGoogle Scholar
  34. 34.
    Wei, Y., Ullah, G., Steven, X., Schiff, J.: Unification of neuronal spikes, seizures, and spreading depression. J. Neurosci. 34(35), 11733–11743 (2014)CrossRefGoogle Scholar
  35. 35.
    Kager, H., Wadman, W.J., Somjen, G.G.: Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol. 84, 495–512 (2000)Google Scholar
  36. 36.
    Cressman, J.J., Ullah, G., Ziburkus, J., Schiff, S.J., Barreto, E.: The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J. Comput. Neurosci. 26, 159–170 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Barreto, E., Cressman, J.R.: Ion concentration dynamics as a mechanism for neural bursting. J. Biol. Phys. 37, 361–373 (2010)CrossRefGoogle Scholar
  38. 38.
    Milo, R., Philips, R.: Cell Biology by the Numbers. Garland Science, New York (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dpto. de Física AplicadaUniversidad de SalamancaSalamancaSpain
  2. 2.Centre National de la Recherche Scientifique, Université de Lille, USR 3380 - IRCICALilleFrance
  3. 3.Centre National de la Recherche Scientifique, Université de Lille, ISEN, Université de Valenciennes, UMR 8520 - IEMNLilleFrance

Personalised recommendations