Skip to main content

A simulation study of voltage-assisted low-energy switching of a perpendicular anisotropy ferromagnet on a topological insulator

Abstract

We present a novel memory device that consists of a thin ferromagnetic layer of Fe deposited on topological insulator thin film, \(\hbox {Bi}_{2}\hbox {Se}_{3}\). The ferromagnetic layer has perpendicular anisotropy, due to MgO deposited on its top surface. When current is passed on the surface of \(\hbox {Bi}_{2}\hbox {Se}_{3}\), the surface of the \(\hbox {Bi}_{2} \hbox {Se}_{3}\) becomes spin polarized and strong exchange interaction occurs between the d electrons in the ferromagnet and the electrons conducting the current on the surface of the \(\hbox {Bi}_{2}\hbox {Se}_{3}\). Part of the current is also shunted through the ferromagnet, which generates spin transfer torque in the ferromagnet. The exchange interaction torque along with voltage-controlled magnetic anisotropy allows ultralow-energy switching of the ferromagnet. We perform micromagnetic simulations and predict switching time of the order of 2.5 ns and switching energy of the order of 0.88fJ for a ferromagnetic bit with thermal stability of \(43\,k_\mathrm{{B}}T\). Such ultralow-energy and high-speed switching of a perpendicular anisotropy ferromagnet on a topological insulator could be utilized for energy-efficient memory design.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Fert, A.: The present and the future of spintronics. Thin Solid Films 517(1), 2–5 (2008)

    Article  Google Scholar 

  2. Datta, S., Das, B.: Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  Google Scholar 

  3. Kane, C.L., Mele, E.J.: Z topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)

  4. Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  Google Scholar 

  5. Melnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014)

    Article  Google Scholar 

  6. Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L.T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwarz, R.N., Tserkovnyak, Y., Wang, K.L.: Magnetization switching through giant spin orbit torque in an magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)

    Article  Google Scholar 

  7. Qi, X.L., Zhang, S.C.: The quantum spin Hall effect and topological insulators. Phys. Today 63, 33 (2010)

    Article  Google Scholar 

  8. Lu, Y., Guo, J.: Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 102, 073106 (2013)

    Article  Google Scholar 

  9. Li, Y., Jalil, M.B.A., Tan, S.G., Zhou, G., Qian, Z.: Magnetoresistive effect of a topological-insulator waveguide in the presence of a magnetic field. Appl. Phys. Lett. 101, 262403 (2012)

    Article  Google Scholar 

  10. Duan, X., Semenov, Y.G., Kim, K.W.: Spin logic via controlled correlation in a topological insulator-nanomagnet hybrid structure. In: IEEE Device Research Conference, pp. 133–134, Notre Dame, IN, U.S.A., 23–26 June (2013)

  11. Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010)

    Article  Google Scholar 

  12. Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin torque switching with the giant spin Hall effect of tantalum. Science 336, 555 (2012)

    Article  Google Scholar 

  13. Carpentieri, M., Finocchio, G., Azzerboni, B., Torres, L.: Spin- transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials. Phys. Rev. B 82, 094434 (2010)

    Article  Google Scholar 

  14. Kieselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrmanand, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin polarized current. Nature (London) 425, 380 (2003)

    Article  Google Scholar 

  15. Cui, Y.T., Sankey, J.C., Wang, C., Thadani, K.V., Li, Z.P., Buhrman, R.A., Ralph, D.C.: Resonant spin-transfer-driven switching of magnetic devices assisted by microwave current pulses. Phys. Rev. B 77, 214440 (2008)

    Article  Google Scholar 

  16. Moriyama, T.T., Finocchio, G., Carpentieri, M., Azzerboni, B., Ralph, D.C.: Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Phys. Rev. B 86, 060411(R) (2012)

    Article  Google Scholar 

  17. Berkov, D.V.: Synchronization of spin-torque-driven nano-oscillators for point contacts on a quasi-one-dimensional nanowire: Micromagnetic simulations. Phys. Rev. B 87, 014406 (2013)

    Article  Google Scholar 

  18. Ulrichs, H., Demidov, V.E., Demokritov, S.O.: Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014)

    Article  Google Scholar 

  19. Slonczewski, J.: Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005)

    Article  Google Scholar 

  20. Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  Google Scholar 

  21. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  Google Scholar 

  22. Katine, J.A., Albert, F.J., Buhrman, R.A.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)

    Article  Google Scholar 

  23. Darwish, M.A.H., Kurt, H., Urazhdin, S., Fert, A., Loloee, R., Pratt, W.P., Bass, J.: Controlled normal and inverse current induced magnetization switching and magnetoresistance in magnetic nanopillars. Phys. Rev. Lett. 93, 157203 (2004)

    Article  Google Scholar 

  24. Fert, A., Nguyen, V.D., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    Article  Google Scholar 

  25. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828 (1989)

    Article  Google Scholar 

  26. Moodera, J.S.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)

    Article  Google Scholar 

  27. Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in \(\text{ Fe/Al }_{2}\text{ O }_{3}\)/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995)

    Article  Google Scholar 

  28. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54, 225–226 (1975)

  29. Fert, A.: Nobel lecture, origin, development, and future of spintronics. Rev. Mod. Phys. 80, 30–1517 (2008)

    Article  Google Scholar 

  30. Grünberg, P.A.: Nobel Lecture, From spin waves to giant magnetoresistance and beyond. Rev. Mod. Phys. 80, 1531–1540 (2008)

    Article  Google Scholar 

  31. Salimath, A., Ghosh, B.: Spin transport in bilayer graphene armchair nanoribbon: a monte carlo simulation study. IEEE Trans. Electron Devices 60(11), 3734 (2013)

    Article  Google Scholar 

  32. Mangin, S., Henry, Y., Ravelosona, D., Katine, J.A., Fullerton, E.E.: Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94, 012502 (2009)

    Article  Google Scholar 

  33. Banerjee, A., Ghosh, B.: Circularly polarized spin current assisted fast resonant switching in magnetic tunnel junctions with perpendicular anisotropy. J. Comput. Electron. 12, 476–480 (2013)

    Article  Google Scholar 

  34. Yokoyama, Takehito, Tserkovnyak, Yaroslav: Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions. Phys. Rev. B 89, 035408-1 - 6 (2014)

    Google Scholar 

  35. Roy, U., Dey, R., Pramanik, T., Ghosh, B., Register, L.F., Banerjee, S.K.: Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator. J. Appl. Phys. 117, 163906 (2015)

  36. Donahue, M.J., Porter, D.G.: OOMMF user’s guide. National Institute of Science and Technology Report No. NISTIR 6376 (1999)

  37. Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004)

    Article  Google Scholar 

  38. Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.A.: Large spin torque in topological insulator/ferromagnetic metal bilayers. Phys. Rev. B 93, 125303 (2016)

    Article  Google Scholar 

  39. Litvinov, V.I.: Magnetic exchange interaction in topological insulators. Phys. Rev. B 89, 235316 (2014)

    Article  Google Scholar 

  40. Zhu, J.J., Yao, D.X., Zhang, S.C., Chang, K.: Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011)

    Article  Google Scholar 

  41. Dimitrov, D.V., Gao, Z., Wang, X., Jung, W., Lou, X., Heinonen, O.G.: Dielectric breakdown of MgO magnetic tunnel junctions. Appl. Phys. Lett. 94, 123110 (2009)

    Article  Google Scholar 

  42. Niranjan, M.K., Duan, C.G., Jaswaland, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO,001.. interface. Appl. Phys. Lett. 96, 222504 (2010)

    Article  Google Scholar 

  43. Luo, C., Feng, Z., Fu, Y., Zhang, W., Wong, P.K.J., Kou, Z.X., Zhai, Y., Ding, H.F., Farle, M., Du, J., Zhai, H.R.: Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants. Phys. Rev. B 89, 184412-1 -7 (2014)

    Google Scholar 

  44. Charilaou, M., Lenz, K., Kuch, W.: Spin-pumping-enhanced magnetic damping in ultrathin Cu(0 0 1)/Co/Cu and Cu(0 0 1)/Ni/Cu films. J. Magn. Magn. Mater. 322, 2065–2070 (2010)

    Article  Google Scholar 

  45. Jungfleisch, M.B., An, T., Ando, K., Kajiwara, Y., Uchida, K., Vasyuchka, V.I., Chumak, A.V., Serga, A.A., Saitoh, E., Hillebrands, B.: Heat-induced damping modification in YIG/Pt hetero-structures. Appl. Phys. Lett. 102, 062417–062420 (2013)

    Article  Google Scholar 

  46. Lee, H.H.S., Tyson, G.S.: Region-based caching: an energy-delay efficient memory architecture for embedded processors. In: CASES ’00, Proceedings of the 2000 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 120–127, ACM, New York, USA, (2000)

  47. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 38–46 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRI SWAN and the NSF NASCENT ERC center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahniman Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Dey, R., Register, L.F. et al. A simulation study of voltage-assisted low-energy switching of a perpendicular anisotropy ferromagnet on a topological insulator. J Comput Electron 16, 120–126 (2017). https://doi.org/10.1007/s10825-016-0951-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0951-x

Keywords