Abstract
We present a novel memory device that consists of a thin ferromagnetic layer of Fe deposited on topological insulator thin film, \(\hbox {Bi}_{2}\hbox {Se}_{3}\). The ferromagnetic layer has perpendicular anisotropy, due to MgO deposited on its top surface. When current is passed on the surface of \(\hbox {Bi}_{2}\hbox {Se}_{3}\), the surface of the \(\hbox {Bi}_{2} \hbox {Se}_{3}\) becomes spin polarized and strong exchange interaction occurs between the d electrons in the ferromagnet and the electrons conducting the current on the surface of the \(\hbox {Bi}_{2}\hbox {Se}_{3}\). Part of the current is also shunted through the ferromagnet, which generates spin transfer torque in the ferromagnet. The exchange interaction torque along with voltage-controlled magnetic anisotropy allows ultralow-energy switching of the ferromagnet. We perform micromagnetic simulations and predict switching time of the order of 2.5 ns and switching energy of the order of 0.88fJ for a ferromagnetic bit with thermal stability of \(43\,k_\mathrm{{B}}T\). Such ultralow-energy and high-speed switching of a perpendicular anisotropy ferromagnet on a topological insulator could be utilized for energy-efficient memory design.
This is a preview of subscription content, access via your institution.







References
Fert, A.: The present and the future of spintronics. Thin Solid Films 517(1), 2–5 (2008)
Datta, S., Das, B.: Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990)
Kane, C.L., Mele, E.J.: Z topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)
Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)
Melnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014)
Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L.T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwarz, R.N., Tserkovnyak, Y., Wang, K.L.: Magnetization switching through giant spin orbit torque in an magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)
Qi, X.L., Zhang, S.C.: The quantum spin Hall effect and topological insulators. Phys. Today 63, 33 (2010)
Lu, Y., Guo, J.: Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 102, 073106 (2013)
Li, Y., Jalil, M.B.A., Tan, S.G., Zhou, G., Qian, Z.: Magnetoresistive effect of a topological-insulator waveguide in the presence of a magnetic field. Appl. Phys. Lett. 101, 262403 (2012)
Duan, X., Semenov, Y.G., Kim, K.W.: Spin logic via controlled correlation in a topological insulator-nanomagnet hybrid structure. In: IEEE Device Research Conference, pp. 133–134, Notre Dame, IN, U.S.A., 23–26 June (2013)
Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010)
Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin torque switching with the giant spin Hall effect of tantalum. Science 336, 555 (2012)
Carpentieri, M., Finocchio, G., Azzerboni, B., Torres, L.: Spin- transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials. Phys. Rev. B 82, 094434 (2010)
Kieselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrmanand, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin polarized current. Nature (London) 425, 380 (2003)
Cui, Y.T., Sankey, J.C., Wang, C., Thadani, K.V., Li, Z.P., Buhrman, R.A., Ralph, D.C.: Resonant spin-transfer-driven switching of magnetic devices assisted by microwave current pulses. Phys. Rev. B 77, 214440 (2008)
Moriyama, T.T., Finocchio, G., Carpentieri, M., Azzerboni, B., Ralph, D.C.: Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Phys. Rev. B 86, 060411(R) (2012)
Berkov, D.V.: Synchronization of spin-torque-driven nano-oscillators for point contacts on a quasi-one-dimensional nanowire: Micromagnetic simulations. Phys. Rev. B 87, 014406 (2013)
Ulrichs, H., Demidov, V.E., Demokritov, S.O.: Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014)
Slonczewski, J.: Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005)
Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)
Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)
Katine, J.A., Albert, F.J., Buhrman, R.A.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)
Darwish, M.A.H., Kurt, H., Urazhdin, S., Fert, A., Loloee, R., Pratt, W.P., Bass, J.: Controlled normal and inverse current induced magnetization switching and magnetoresistance in magnetic nanopillars. Phys. Rev. Lett. 93, 157203 (2004)
Fert, A., Nguyen, V.D., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828 (1989)
Moodera, J.S.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)
Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in \(\text{ Fe/Al }_{2}\text{ O }_{3}\)/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995)
Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54, 225–226 (1975)
Fert, A.: Nobel lecture, origin, development, and future of spintronics. Rev. Mod. Phys. 80, 30–1517 (2008)
Grünberg, P.A.: Nobel Lecture, From spin waves to giant magnetoresistance and beyond. Rev. Mod. Phys. 80, 1531–1540 (2008)
Salimath, A., Ghosh, B.: Spin transport in bilayer graphene armchair nanoribbon: a monte carlo simulation study. IEEE Trans. Electron Devices 60(11), 3734 (2013)
Mangin, S., Henry, Y., Ravelosona, D., Katine, J.A., Fullerton, E.E.: Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94, 012502 (2009)
Banerjee, A., Ghosh, B.: Circularly polarized spin current assisted fast resonant switching in magnetic tunnel junctions with perpendicular anisotropy. J. Comput. Electron. 12, 476–480 (2013)
Yokoyama, Takehito, Tserkovnyak, Yaroslav: Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions. Phys. Rev. B 89, 035408-1 - 6 (2014)
Roy, U., Dey, R., Pramanik, T., Ghosh, B., Register, L.F., Banerjee, S.K.: Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator. J. Appl. Phys. 117, 163906 (2015)
Donahue, M.J., Porter, D.G.: OOMMF user’s guide. National Institute of Science and Technology Report No. NISTIR 6376 (1999)
Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004)
Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.A.: Large spin torque in topological insulator/ferromagnetic metal bilayers. Phys. Rev. B 93, 125303 (2016)
Litvinov, V.I.: Magnetic exchange interaction in topological insulators. Phys. Rev. B 89, 235316 (2014)
Zhu, J.J., Yao, D.X., Zhang, S.C., Chang, K.: Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011)
Dimitrov, D.V., Gao, Z., Wang, X., Jung, W., Lou, X., Heinonen, O.G.: Dielectric breakdown of MgO magnetic tunnel junctions. Appl. Phys. Lett. 94, 123110 (2009)
Niranjan, M.K., Duan, C.G., Jaswaland, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO,001.. interface. Appl. Phys. Lett. 96, 222504 (2010)
Luo, C., Feng, Z., Fu, Y., Zhang, W., Wong, P.K.J., Kou, Z.X., Zhai, Y., Ding, H.F., Farle, M., Du, J., Zhai, H.R.: Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants. Phys. Rev. B 89, 184412-1 -7 (2014)
Charilaou, M., Lenz, K., Kuch, W.: Spin-pumping-enhanced magnetic damping in ultrathin Cu(0 0 1)/Co/Cu and Cu(0 0 1)/Ni/Cu films. J. Magn. Magn. Mater. 322, 2065–2070 (2010)
Jungfleisch, M.B., An, T., Ando, K., Kajiwara, Y., Uchida, K., Vasyuchka, V.I., Chumak, A.V., Serga, A.A., Saitoh, E., Hillebrands, B.: Heat-induced damping modification in YIG/Pt hetero-structures. Appl. Phys. Lett. 102, 062417–062420 (2013)
Lee, H.H.S., Tyson, G.S.: Region-based caching: an energy-delay efficient memory architecture for embedded processors. In: CASES ’00, Proceedings of the 2000 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 120–127, ACM, New York, USA, (2000)
Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 38–46 (1985)
Acknowledgements
This work was supported in part by the NRI SWAN and the NSF NASCENT ERC center.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghosh, B., Dey, R., Register, L.F. et al. A simulation study of voltage-assisted low-energy switching of a perpendicular anisotropy ferromagnet on a topological insulator. J Comput Electron 16, 120–126 (2017). https://doi.org/10.1007/s10825-016-0951-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-016-0951-x