Skip to main content
Log in

Impact of inelastic phonon scattering in the OFF state of Tunnel-field-effect transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We study the impact of electron–phonon interaction on the subthreshold operation region of Tunnel-FETs by means of full-quantum simulations. Our approach is based on the nonequilibrium Green’s function method, where acoustic and optical phonon scatterings are taken into account through the self-consistent Born approximation. Two device architectures are analyzed: InAs nanowire longitudinal Tunnel-FETs, and 2D vertical Tunnel-FETs based on either an GaSb/AlSb/InAs heterostructure or a MoS\(_2\)/WTe\(_2\) van der Waals heterojunction. In InAs nanowire Tunnel-FETs with interface traps, electron–phonon interaction deteriorates the subthreshold swing by allowing trap-assisted tunneling at energies higher than the valence-band edge in the source. In vertical heterojunction Tunnel-FETs, optical phonon scattering increases the OFF current by inducing inelastic transition in the overlap region even in the absence of traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lundstrom, M.S.: Fundamentals of Carrier Transport. Addison Wesley, New York (1990)

    Google Scholar 

  2. Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors: Semi-classical Modeling and Applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  3. Esseni, D., Pala, M., Rollo, T.: Essential physics of the OFF-state current in nanoscale MOSFETs and tunnel FETs. IEEE Trans. Electron Dev. 62(9), 3084 (2015). doi:10.1109/TED.2015.2458171

    Article  Google Scholar 

  4. Seabaugh, A., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095 (2010). doi:10.1109/JPROC.2010.2070470

  5. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(9), 329 (2011). doi:10.1038/nature10679

    Article  Google Scholar 

  6. Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. J. Electron Dev. Soc. 2(4), 44 (2014). doi:10.1109/JEDS.2014.2326622

  7. Dewey,G., Chu-Kung,B., Boardman,J., Fastenau,J.M., Kavalieros,J.,Kotlyar,R., Liu,W.K., Lubyshev, D., Metz, M., Mukherjee, N., Oakey,P., Pillarisetty, R., Radosavljevic, M., Then, H.W., Chau R.: Fabrication, characterization, and physics of III–V heterojunctiontunneling Field Effect Transistors (H-TFET) for steep sub-thresholdswing. In: IEEE IEDM Technical Digest, pp. 33.6.1–33.6.4 (2011). doi:10.1109/IEDM.2011.6131666

  8. Gandhi, R., Chen, Z., Singh, N., Banerjee, K., Lee, S.: CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs With 50 mV/decade subthreshold swing. Electron Dev. Lett. IEEE 32(11), 1504 (2011). doi:10.1109/LED.2011.2165331

    Article  Google Scholar 

  9. Huang, Q, Huang, R., Zhan, Z., Qiu, Y., Jiang, W., Wu, C., Wang, Y.: A novel Si tunnel FET with 36mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration. In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 8.5.1–8.5.4 (2012). doi:10.1109/IEDM.2012.6479005

  10. Tomioka, K., Yoshimura, M., Fukui, T.: Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction. In: VLSI Technology (VLSIT), 2012 Symposium on (2012), pp. 47–48. doi:10.1109/VLSIT.2012.6242454

  11. Ganjipour, B., Wallentin, J., Borgstrm, M.T., Samuelson, L., Thelander, C.: Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano 6(4), 3109 (2012). doi:10.1021/nn204838m

    Article  Google Scholar 

  12. Noguchi, M., Kim, S., Yokoyama, M., Ji, S., Ichikawa, O., Osada, T., Hata, M., Takenaka, M., Takagi, S.: High Ion/Ioff and low subthreshold slope planar-type InGaAs tunnel FETs with Zn-diffused source junctions, In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 28.1.1–28.1.4 (2013). doi:10.1109/IEDM.2013.6724707

  13. Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P.M., Banerjee, K.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91 (2015). doi:10.1038/nature15387

  14. Khayer, M.A., Lake, R.K.: Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors. J. Appl. Phys. 110(7), 074508 (2011). doi:10.1063/1.3642954

    Article  Google Scholar 

  15. Mookerjea, S., Mohata, D., Mayer, T., Narayanan, V., Datta, S.: Temperature-dependent I–V characteristics of a vertical \({\rm In}_{0.53}{\rm Ga}_{0.47}{\rm As}\) tunnel FET. IEEE Electron Dev. Lett. 31(6), 564 (2010). doi:10.1109/LED.2010.2045631

    Article  Google Scholar 

  16. Pala, M., Esseni, D., Conzatti, F.: Impact of interface traps on the IV curves of InAs Tunnel-FETs and MOSFETs: a full quantum study. In: IEEE IEDM Technical Digest, pp. 6.6.1–6.6.4 (2012). doi:10.1109/IEDM.2012.6478992

  17. Koswatta, S., Lundstrom, M., Nikonov, D.: Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors. Appl. Phys. Lett. 92(4), 043125 (2008). doi:10.1063/1.2839375

    Article  Google Scholar 

  18. Pala, M., Esseni, D.: Interface traps in InAs nanowire tunnel-FETs and MOSFETs—Part I: model description and single trap analysis in tunnel-FETs. IEEE Trans. Electron Dev. 60(9), 2795 (2013). doi:10.1109/TED.2013.2274196

    Article  Google Scholar 

  19. Esseni, D., Pala, M.: Interface Traps in InAs Nanowire Tunnel FETs and MOSFETs – Part II: Comparative Analysis and Trap-Induced Variability. IEEE Trans. Electron Dev. 60(9), 2802 (2013). doi:10.1109/TED.2013.2274197

    Article  Google Scholar 

  20. Datta, S.: Quantum Transport—Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  21. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S., Jovanovic, D.: Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches. J. Appl. Phys. 92(7), 3730 (2002). doi:10.1063/1.1503165

  22. Poli, S., Pala, M., Poiroux, T., Deleonibus, S., Baccarani, G., Trans, I.E.E.E.: Size dependence of surface-roughness-limited mobility in Silicon-nanowire FETs. Electron Dev. 55(11), 2968 (2008). doi:10.1109/TED.2008.2005164

  23. Shin, M.: Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k\(\cdot {}\)p method. J. Appl. Phys. 106(5), 054505 (2009). doi:10.1063/1.3208067

    Article  Google Scholar 

  24. Mahan, G.: Many-Particle Physics. Plenum Press, New York (1990)

    Book  Google Scholar 

  25. Rogdakis, K., Poli, S., Bano, E., Zekentes, K., Pala, M.: Phonon and surface roughness limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20(29), 295202 (2009). http://stacks.iop.org/0957-4484/20/i=29/a=295202

  26. Ferry, D., Goodnick, S.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  27. Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of Nanoscale Devices. Proc. of IEEE 96, 1511 (2008). doi:10.1109/JPROC.2008.927355

  28. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984). doi:10.1088/0305-4608/14/5/016

  29. Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009). doi:10.1103/PhysRevB.80.155430

    Article  Google Scholar 

  30. Bahder, T.B.: Eight-band k\(\cdot {}\)p model of strained zinc-blende crystals. Phys. Rev. B 41(17), 11992 (1990). doi:10.1103/PhysRevB.41.11992

    Article  Google Scholar 

  31. Luisier, M., Klimeck, G.: Atomistic full-band design study of InAs band-to-band tunneling field-effect transistors. IEEE Electron Dev. Lett. 30(6), 602 (2009). doi:10.1109/LED.2009.2020442

    Article  Google Scholar 

  32. Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010). doi:10.1063/1.3386521

    Article  Google Scholar 

  33. Avci, U., Hasan, S., Nikonov, D., Rios, R., Kuhn, K., Young, I.: Understanding the feasibility of scaled III-V TFET for logic by bridging atomistic simulations and experimental results. In: 2012 Symposium on VLSI Technology (VLSIT), pp. 183–184 (2012). doi:10.1109/VLSIT.2012.6242522

  34. Shin, M., Lee, S., Klimeck, G.: Computational study on the performance of Si nanowire pMOSFETs based on the k \(\cdot \) p method. IEEE Trans. Electron Dev. 57(9), 2274 (2010). doi:10.1109/TED.2010.2052400

    Article  Google Scholar 

  35. Conzatti, F., Pala, M., Esseni, D., Bano, E., Selmi, L.: Strain-induced performance improvements in InAs nanowire tunnel FETs. IEEE Trans. Electron Dev. 59(8), 2085 (2012). doi:10.1109/TED.2012.2200253

  36. Fischetti, M.V.: Monte Carlo simulation of transport in technologically significant semiconductors of the Diamond and Zinc-Blende structures - Part I: homogeneous transport. IEEE Trans. Electron Dev. ED–38, 634 (1991). doi:10.1109/16.75176

  37. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815 (2001). doi:10.1063/1.1368156

    Article  Google Scholar 

  38. Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of k\(\cdot {}\)p envelope equations. Phys. Rev. B 76, 165320 (2007). doi:10.1103/PhysRevB.76.165320

    Article  Google Scholar 

  39. Mookerjea, S., Mohata, D., Krishnan, R., Singh, J., Vallet, A-, Ali, A., Mayer, T., Narayanan, V., Schlom, D., Liu, A., Datta, S.: Experimental demonstration of 100nm channel length In\(_{0.53}\)Ga\(_{0.47}\)As-based vertical inter-band tunnel Field Effect Transistors (TFETs) for ultra low-power logic and SRAM applications. In: IEEE IEDM Technical Digest, pp. 949–952 (2009). doi:10.1109/IEDM.2009.5424355

  40. Brocard, S., Pala, M., Esseni, D.: Design options for hetero-junction tunnel FETs with high on current and steep sub-threshold voltage slope. In: Electron Devices Meeting (IEDM), 2013 IEEE International, pp. 5.4.1–5.4.4 (2013) doi:10.1109/IEDM.2013.6724567

  41. Mingda, L., Esseni, D., Snider, G., Jena, D., Xing, H.G.: Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115, 074508 (2014). doi:10.1063/1.4866076

  42. Szabo, A., Koester, S., Luisier, M.: Ab-initio simulation of van der Waals MoTe\(_2\)-SnS\(_2\) heterotunneling FETs for low-power electronics. IEEE Electron Dev. Lett. 36(5), 514 (2015). doi:10.1109/LED.2015.2409212

  43. Cao, J., Logoteta, D., Özkaya, S., Biel, B., Cresti, A., Pala, M., Esseni, D.: A computational study of van der Waals tunnel transistors: Fundamental aspects and design challenges. In: 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 12.5.1–12.5.4. doi:10.1109/IEDM.2015.7409684

  44. Szabo, A., Koester, S. J., Luisier, M.: Metal-dichalcogenide hetero-TFETs: are they a viable option for low power electronics? Device Research Conference (DRC), 19 (2014). doi:10.1109/DRC.2014.6872279

  45. Torun, E., Sahin, H., Cahangirov, S., Rubio, A., Peeters, F.M.: Anisotropic electronic, mechanical, and optical properties of monolayer WTe\(_2\) J. Appl. Phys. 119, 074307 (2016). doi:10.1063/1.4942162

  46. Cao, J., Cresti, A., Esseni, D., Pala, M.: Quantum simulation of a heterojunction vertical tunnel FET based on 2D transition metal dichalcogenides. Solid-State Electron. 116, 1 (2016). doi:10.1016/j.sse.2015.11.003

    Article  Google Scholar 

  47. Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W.: Phonon-limited mobility in \(n\)-type single-layer MoS\({}_{2}\) from first principles. Phys. Rev. B 85, 115317 (2012). doi:10.1103/PhysRevB.85.115317

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French ANR through the project No. ANR-13-NANO-0009-01 (“NOODLES”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco G. Pala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pala, M.G., Grillet, C., Cao, J. et al. Impact of inelastic phonon scattering in the OFF state of Tunnel-field-effect transistors. J Comput Electron 15, 1240–1247 (2016). https://doi.org/10.1007/s10825-016-0900-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0900-8

Keywords

Navigation