Skip to main content
Log in

Manipulation of structural and optical behaviors in zincblende and wurtzite mercuric sulfide (HgS) nanocrystals: atomistic tight-binding theory

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

To obtain comprehensive information regarding the effect of size and geometric structure on the associated atomistic properties of mercuric sulfide (HgS) nanocrystals, the structural and optical properties of HgS semiconductor nanocrystals were explored numerically using atomistic tight-binding theory. The optical bandgap, charge density, density of states, electron–hole Coulomb energy, and optical spectrum were evaluated for different sizes and geometric structures. Size-dependent computations were realized by changing the diameter of the HgS nanocrystals. In addition, HgS nanocrystals with wurtzite and zincblende geometric structures were compared numerically. The theoretical results highlight that control of the electronic structure and optical properties of HgS nanocrystals can be achieved by changing their size and geometric structure. The dependence of the optical bandgap on the dimension of the HgS nanocrystals is mainly determined by quantum confinement. Finally, the optical properties of zincblende HgS nanocrystals are more promising than those of wurtzite HgS nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sapriel, J.: Cinnabar (\(\alpha \) HgS), a promising acousto-optical material. Appl. Phys. Lett. 19, 533–535 (1971)

    Article  Google Scholar 

  2. Higginson, K.A., Kuno, M., Bonevich, J., Qadri, S.B., Yousuf, M., Mattoussi, H.: Synthesis and characterization of colloidal \(\beta \)-HgS quantum dots. J. Phys. Chem. B 106, 9982–9985 (2002)

    Article  Google Scholar 

  3. Chakraborty, I., Mitra, D., Moulik, S.P.: Spectroscopic studies on nanodispersions of CdS, HgS, their core–shells and composites prepared in micellar medium. J. Nanopart. Res. 7, 227–236 (2005)

    Article  Google Scholar 

  4. Kershaw, S.V., Harrison, M., Rogach, A.L., Kornowski, A.: Development of IR-emitting colloidal II–VI quantum-dot materials. IEEE J. Sel. Top. Quantum Electron. 6, 534–543 (2000)

    Article  Google Scholar 

  5. Roberts, G.G., Lind, E.L., Davis, E.A.: Photoelectronic properties of synthetic mercury sulphide crystals. J. Phys. Chem. Solids 30, 833–844 (1969)

    Article  Google Scholar 

  6. Mahapatra, A.K., Dash, A.K.: \(\alpha \)-HgS nanocrystals: synthesis, structure and optical properties. Phys. E 35, 9–15 (2006)

    Article  Google Scholar 

  7. Xu, X., Carraway, E.R.: Sonication-assisted synthesis of \(\beta \)-mercuric sulfide nanoparticles. Nanomater. Nanotechnol. 2, 17–22 (2012)

    Google Scholar 

  8. Onwudiwe, D.C., Ajibade, A.: ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)

    Article  Google Scholar 

  9. Ding, T., Zhu, J.-J.: Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater. Sci. Eng. B 100, 307–313 (2003)

    Article  Google Scholar 

  10. Han, L., Hou, P., Feng, Y., Liu, H., Li, J., Peng, Z., Yang, J.: Phase transfer-based synthesis of HgS nanocrystals. Dalton Trans. 43, 11981–11987 (2014)

    Article  Google Scholar 

  11. Hemdana, I., Mahdouani, M., Bourguiga, R.: Investigation of the radiative lifetime in core–shell CdSe/ZnS and CdSe/ZnSe quantum dots. Phys. B 407, 3313–3319 (2012)

    Article  MATH  Google Scholar 

  12. Williamson, A.J., Zunger, A.: Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots. Phys. Rev. B. 61, 1978–1991 (2000)

    Article  Google Scholar 

  13. Wang, L.W., Zunger, A.: Electronic structure pseudopotential calculations of large (.apprx.1000 atoms) Si quantum dots. J. Phys. Chem. 98, 2158–2165 (1994)

    Article  Google Scholar 

  14. Leung, K., Whaley, K.B.: Electron-hole interactions in silicon nanocrystals. Phys. Rev. B. 56, 7455–7468 (1997)

    Article  Google Scholar 

  15. Niquet, Y.M., Delerue, C., Lannoo, M., Allan, G.: Single-particle tunneling in semiconductor quantum dots. Phys. Rev. B 64, 113305–113308 (2001)

    Article  Google Scholar 

  16. Luo, Y., Wang, L.-W.: Electronic structures of the CdSe/CdS core–shell nanorods. ACS Nano 4(1), 91–98 (2010)

    Article  Google Scholar 

  17. Yang, S., Prendergast, D., Neaton, J.B.: Strain-induced band gap modification in coherent core/shell nanostructures. Nano Lett. 10(8), 3156–3162 (2010)

    Article  Google Scholar 

  18. Khoo, K.H., Arantes, J.T., Chelikowsky, J.R., Dalpian, G.M.: First-principles calculations of lattice-strained core–shell nanocrystals. Phys. Rev. B 84, 075311–075317 (2011)

    Article  Google Scholar 

  19. Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)

    Article  Google Scholar 

  20. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  Google Scholar 

  21. Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)

    Article  Google Scholar 

  22. Sukkabot, W.: Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Phys. E Low Dimens. Syst. Nanostruct. 63, 235–240 (2014)

    Article  Google Scholar 

  23. Sukkabot, W.: Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: tight-binding theory. Superlattices Microstruct. 75, 739–748 (2014)

    Article  Google Scholar 

  24. Sukkabot, W.: Tight-binding theory of the excitonic states in colloidal InSb nanostructures. Mater. Sci. Semicond. Process. 27, 51–55 (2014)

    Article  Google Scholar 

  25. Sukkabot, W.: Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals. Comput. Mater. Sci. 96, 336–341 (2014)

    Article  Google Scholar 

  26. Sukkabot, W.: Role of structural and compositional details in atomistic tight-binding calculations for InN nanocrystals. Mater. Sci. Semicond. Process. 38, 142–148 (2015)

    Article  Google Scholar 

  27. Sukkabot, W.: Structural properties of SiC zinc-blende and wurtzite nanostructures: atomistic tight-binding theory. Mater. Sci. Semicond. Process. 40, 117–122 (2015)

    Article  Google Scholar 

  28. Korkusinski, M., Voznyy, O., Hawrylak, P.: Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals. Phys. Rev. B 82, 245304–245319 (2010)

    Article  Google Scholar 

  29. Bryant, G.W., Jaskólski, W.: Tight-binding theory of quantum-dot quantum wells: single-particle effects and near-band-edge structure. Phys. Rev. B 67, 205320–205336 (2003)

    Article  Google Scholar 

  30. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  31. Svane, A., Christensen, N.E., Cardona, M., Chantis, A.N., van Schilfgaarde, M., Kotani, T.: Quasiparticle band structures of \(\beta \)-HgS, HgSe, and HgTe. Phys. Rev. B 84, 205205–205210 (2011)

    Article  Google Scholar 

  32. Moon, C.-Y., Wei, S.-H.: Band gap of Hg chalcogenides: symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205–045209 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been kindly supported by Department of Physics, Faculty of Science, Ubon Ratchathani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Sukkabot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkabot, W. Manipulation of structural and optical behaviors in zincblende and wurtzite mercuric sulfide (HgS) nanocrystals: atomistic tight-binding theory. J Comput Electron 15, 756–762 (2016). https://doi.org/10.1007/s10825-016-0873-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0873-7

Keywords

Navigation