Towards realistic time-resolved simulations of quantum devices


We report on our recent efforts to perform realistic simulations of large quantum devices in the time domain. In contrast to d.c. transport where the calculations are explicitly performed at the Fermi level, the presence of time-dependent terms in the Hamiltonian makes the system inelastic so that it is necessary to explicitly enforce the Pauli principle in the simulations. We illustrate our approach with calculations for a flying qubit interferometer, a nanoelectronic device that is currently under experimental investigation. Our calculations illustrate the fact that many degrees of freedom (16,700 tight-binding sites in the scattering region) and long simulation times (9500 times the inverse bandwidth of the tight-binding model) can be easily achieved on a local computer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ashoori, R.C., Stormer, H.L., Pfeiffer, L.N., Baldwin, K.W., West, K.: Edge magnetoplasmons in the time domain. Phys. Rev. B 45(7), 3894–3897 (1992)

    Article  Google Scholar 

  2. 2.

    Bautze, T., Süssmeier, C., Takada, S., Groth, C., Meunier, T., Yamamoto, M., Tarucha, S., Waintal, X., Bäuerle, C.: Theoretical, numerical, and experimental study of a flying qubit electronic interferometer. Phys. Rev. B 89(12), 125,432 (2014)

    Article  Google Scholar 

  3. 3.

    Cini, M.: Time-dependent approach to electron transport through junctions: General theory and simple applications. Phys. Rev. B 22(12), 5887–5899 (1980)

    Article  Google Scholar 

  4. 4.

    Dubois, J., Jullien, T., Portier, F., Roche, P., Cavanna, A., Jin, Y., Wegscheider, W., Roulleau, P., Glattli, D.C.: Minimal-excitation states for electron quantum optics using levitons. Nature 502(7473), 659–663 (2013)

    Article  Google Scholar 

  5. 5.

    Fehlberg, D.E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6(1–2), 61–71 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Fève, G., Mahé, A., Berroir, J.M., Kontos, T., Plaçais, B., Glattli, D.C., Cavanna, A., Etienne, B., Jin, Y.: An on-demand coherent single-electron source. Science 316(5828), 1169–1172 (2007)

    Article  Google Scholar 

  7. 7.

    Fruchart, M., Delplace, P., Weston, J., Waintal, X., Carpentier, D.: Probing (topological) Floquet states through DC transport. Phys. E: Low-Dimensional Syst. Nanost. 75, 287–294 (2016)

    Article  Google Scholar 

  8. 8.

    Gaury, B., Waintal, X.: Dynamical control of interference using voltage pulses in the quantum regime. Nat. Commun. 5, 3844 (2014)

    Article  Google Scholar 

  9. 9.

    Gaury, B., Waintal, X.: A computational approach to quantum noise in time-dependent nanoelectronic devices. Phys. E Low Dimensional Syst. Nanost. 75, 72–76 (2016)

    Article  Google Scholar 

  10. 10.

    Gaury, B., Weston, J., Santin, M., Houzet, M., Groth, C., Waintal, X.: Numerical simulations of time-resolved quantum electronics. Phys. Rep. 534(1), 1–37 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Gaury, B., Weston, J., Waintal, X.: Stopping electrons with radio-frequency pulses in the quantum Hall regime. Phys. Rev. B 90(16), 161,305 (2014)

    Article  Google Scholar 

  12. 12.

    Gaury, B., Weston, J., Waintal, X.: The a.c. Josephson effect without superconductivity. Nat. Commun. 6, 6524 (2015)

    Article  Google Scholar 

  13. 13.

    Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063,065 (2014)

    Article  Google Scholar 

  14. 14.

    Jauho, A.P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50(8), 5528–5544 (1994)

    Article  Google Scholar 

  15. 15.

    Kamata, H., Ota, T., Muraki, K., Fujisawa, T.: Voltage-controlled group velocity of edge magnetoplasmon in the quantum Hall regime. Phys. Rev. B 81(8), 085,329 (2010)

    Article  Google Scholar 

  16. 16.

    Kumada, N., Kamata, H., Fujisawa, T.: Edge magnetoplasmon transport in gated and ungated quantum Hall systems. Phys. Rev. B 84(4), 045,314 (2011)

    Article  Google Scholar 

  17. 17.

    Kurth, S., Stefanucci, G., Almbladh, C.O., Rubio, A., Gross, E.K.U.: Time-dependent quantum transport: A practical scheme using density functional theory. Phys. Rev. B 72(3), 035,308 (2005)

    Article  Google Scholar 

  18. 18.

    Landauer, R.: Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev. 1(3), 223–231 (1957)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine 21(172), 863–867 (1970)

    Article  Google Scholar 

  20. 20.

    Moskalets, M.: Scattering matrix approach to non-stationary quantum transport. Imperial College Press, London (2012)

    MATH  Google Scholar 

  21. 21.

    Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K.: Quadpack, springer series in computational mathematics, vol. 1. Springer, Berlin Heidelberg (1983)

    MATH  Google Scholar 

  22. 22.

    Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78(3), 035,407 (2008)

    Article  Google Scholar 

  23. 23.

    Stefanucci, G., Leeuwen, R.v.: Nonequilibrium many-body theory of quantum systems: a modern introduction, 1 edn. Cambridge University Press, Cambridge (2013)

  24. 24.

    Takada, S., Bäuerle, C., Yamamoto, M., Watanabe, K., Hermelin, S., Meunier, T., Alex, A., Weichselbaum, A., von Delft, J., Ludwig, A., Wieck, A., Tarucha, S.: Transmission phase in the kondo regime revealed in a two-path interferometer. Phys. Rev. Lett. 113(12), 126,601 (2014)

    Article  Google Scholar 

  25. 25.

    Takada, S., Yamamoto, M., Bäuerle, C., Watanabe, K., Ludwig, A., Wieck, A.D., Tarucha, S.: Measurement of the transmission phase of an electron in a quantum two-path interferometer. Appl. Phys. Lett. 107(6), 063,101 (2015)

  26. 26.

    Weston, J., Gaury, B., Waintal, X.: Manipulating Andreev and Majorana bound states with microwaves. Phys. Rev. B 92(2), 020,513 (2015)

  27. 27.

    Weston, J., Waintal, X.: Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity. Phys. Rev. B 93(13), 134,506 (2016)

    Article  Google Scholar 

  28. 28.

    Wimmer, M.: Quantum transport in nanostructures: from computational concepts to spintronics in graphene and magnetic tunnel junctions, 1. aufl edn. No. 5 in Dissertationsreihe der Fakultät für Physik der Universität Regensburg. Univ.-Verl. Regensburg, Regensburg (2009)

  29. 29.

    Wingreen, N.S., Jauho, A.P., Meir, Y.: Time-dependent transport through a mesoscopic structure. Phys. Rev. B 48(11), 8487–8490 (1993)

    Article  Google Scholar 

  30. 30.

    Zhong, Z., Gabor, N.M., Sharping, J.E., Gaeta, A.L., McEuen, P.L.: Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nano. 3(4), 201–205 (2008)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Joseph Weston.

Additional information

This work was supported by the QTERA grant from the Agence Nationale de la Recherche (ANR) and the MESOQMC grant from the European Research Council. We thank Chris Baüerle, Grégoire Roussely and Shintaro Takada for interesting discussions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weston, J., Waintal, X. Towards realistic time-resolved simulations of quantum devices. J Comput Electron 15, 1148–1157 (2016).

Download citation


  • Time-resolved
  • Flying qubit
  • Electronic interferometer