Abstract
Transition metal-oxide resistive random-access memories seem to be a viable candidate as the next-generation storage technology because transition metals have multiple oxidation states and are good ionic conductors. A wide range of transition metal oxides have recently been studied; however, fundamental understanding of the switching mechanism is still lacking. Migration energies and diffusivity of oxygen vacancies in amorphous and crystalline \(\hbox {HfO}_{2}\) and \(\hbox {CeO}_{2}\) and at their interface are investigated by employing density functional theory. We found that oxygen dynamics is better in \(\hbox {CeO}_{2}\) compared to \(\hbox {HfO}_{2}\), including smaller activation energy barriers and larger diffusion pre-factors, which can have implications in the material-selection process to determine which combination of materials offer the most efficient switching. Furthermore, we found that motion of vacancies is different at the interface of these two oxides as compared to that within each constituents, which provided insight into the role of the interface in vacancy motion and ultimately using interface engineering as a way to tune material properties.
This is a preview of subscription content, access via your institution.





References
Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7, 785–790 (1964)
Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories: nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)
Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S.: Resistive switching mechanism of TiO\(_2\) thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)
Baek, I.G., Lee, M.S., Seo, S., Lee, M.-J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K.: others: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. pp. 587–590. IEEE (2004)
Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S., Mueller, G.: A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid-State Circuits 42, 839–845 (2007)
Lee, M.-J., Seo, S., Kim, D.-C., Ahn, S.-E., Seo, D.H., Yoo, I.-K., Baek, I.-G., Kim, D.-S., Byun, I.-S., Kim, S.-H., Hwang, I.-R., Kim, J.-S., Jeon, S.-H., Park, B.H.: A low-temperature-grown oxide diode as a new switch element for high-density. Nonvolatile Mem. Adv. Mater. 19, 73–76 (2007)
Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO\(_2\) resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)
Chagarov, E.A., Kummel, A.C.: Ab initio molecular dynamics simulations of properties of a-Al\(_2\)O\(_3\) /vacuum and a-ZrO\(_2\)/vacuum vs a-Al\(_2\)O\(_3\)/Ge(100)(2\(\,\times \, \)1) and a-ZrO\(_2\)/Ge(100)(2Â \(\times \)Â 1) interfaces. J. Chem. Phys. 130, 124717 (2009)
Chagarov, E.A., Kummel, A.C.: Molecular dynamics simulation comparison of atomic scale intermixing at the amorphous Al2O3/semiconductor interface for a-Al\(_2\)O\(_3\)/Ge, a-Al\(_2\)O\(_3\)/InGaAs, and a-Al\(_2\)O\(_3\)/InAlAs/InGaAs. Surf. Sci. 603, 3191–3200 (2009)
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)
Lewis, G.V., Catlow, C.R.A.: Potential models for ionic oxides. J. Phys. C Solid State Phys. 18, 1149 (1985)
Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287 (1921)
Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)
Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)
Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)
Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)
Clima, S., Chen, Y.Y., Degraeve, R., Mees, M., Sankaran, K., Govoreanu, B., Jurczak, M., De Gendt, S., Pourtois, G.: First-principles simulation of oxygen diffusion in HfOx: role in the resistive switching mechanism. Appl. Phys. Lett. 100, 133102 (2012)
Rupp, J.L.M., Scherrer, B., Gauckler, L.J.: Engineering disorder in precipitation-based nano-scaled metal oxide thin films. Phys. Chem. Chem. Phys. 12, 11114 (2010)
Vargas, M., Murphy, N.R., Ramana, C.V.: Structure and optical properties of nanocrystalline hafnium oxide thin films. Opt. Mater. 37, 621–628 (2014)
Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)
Capron, N., Broqvist, P., Pasquarello, A.: Migration of oxygen vacancy in HfO\(_2\) and across the HfO\(_2\)/SiO\(_2\) interface: a first-principles investigation. Appl. Phys. Lett. 91, 192905 (2007)
Zafar, S., Jagannathan, H., Edge, L.F., Gupta, D.: Measurement of oxygen diffusion in nanometer scale HfO\(_2\) gate dielectric films. Appl. Phys. Lett. 98, 152903 (2011)
Dholabhai, P.P., Adams, J.B., Crozier, P., Sharma, R.: Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT+U study. J. Chem. Phys. 132, 094104 (2010)
Nolan, M., Fearon, J., Watson, G.: Oxygen vacancy formation and migration in ceria. Solid State Ion. 177, 3069–3074 (2006)
Frayret, C., Villesuzanne, A., Pouchard, M., Matar, S.: Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials. Int. J. Quantum Chem. 101, 826–839 (2005)
Adler, S.B., Smith, J.W.: Effects of long-range forces on oxygen transport in yttria-doped ceria: simulation and theory. J. Chem. Soc. Faraday Trans. 89, 3123–3128 (1993)
Tuller, H.L., Nowick, A.S.: Small polaron electron transport in reduced CeO\(_2\) single crystals. J. Phys. Chem. Solids 38, 859–867 (1977)
Acknowledgments
This work is based on the work supported primarily by the National Science Foundation under Cooperative Agreement No. EEC-1160494. All opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high-performance computational resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhatti, A.A., Hsieh, CC., Roy, A. et al. First-principles simulation of oxygen vacancy migration in \(\hbox {HfO}_{ x}\), \(\hbox {CeO}_{ x}\), and at their interfaces for applications in resistive random-access memories. J Comput Electron 15, 741–748 (2016). https://doi.org/10.1007/s10825-016-0847-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-016-0847-9