Skip to main content
Log in

A Gaussian model for recombination via carrier-trap distributions in organic solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

So far, the model and the number of parameters that have been used in the literature to describe the recombination mechanism in an organic semiconductor depend on the type of trap distribution assumed. Because using only one particular recombination model could be relevant for the design of a computer algorithm to simulate organic devices, in this work, we analyze and validate a function that could be considered to be a generalization of the classic model of the recombination process via carrier-traps. Our proposal is based on Shockley–Read–Hall model which is extended to include traps in the energy continuum. We show that a Gaussian function could be set through physical parameters to approximate the most common trap distributions in the band gap such as an exponential distribution and traps in a single energy level. The application of this model for the determination of the current density–voltage characteristics of organic solar cells under illumination and in the dark is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  Google Scholar 

  2. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovolt: Res. Appl. 24, 3–11 (2015)

    Article  Google Scholar 

  3. Deibel, C., Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)

    Article  Google Scholar 

  4. Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011)

    Article  Google Scholar 

  5. Kirchartz, T., Pieters, B.E., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011)

    Article  Google Scholar 

  6. MacKenzie, R., Kirchartz, T., Dibb, G.F.A., Nelson, J.: Modeling nongeminate recombination in P3HT:PCBM solar cells. J. Phys. Chem. C 115, 9806–9813 (2011)

    Article  Google Scholar 

  7. Zhou, S., Sun, J., Zhou, C., Deng, Z.: Comparison of recombination models in organic bulk heterojunction solar cells. Phys. B 415, 28–33 (2013)

    Article  Google Scholar 

  8. Hawks, S.A., Li, G., Yang, Y., Street, R.A.: Band tail recombination in polymer:fullerene organic solar cells. J. Appl. Phys. 116, 074503 (2014)

  9. Hernandez, L.F., Cabrera, V., Resendiz, L.M.: Influence of the recombination mechanism via band tails on the electric performance of a bulk heterojunction solar cell. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (2014)

  10. Nicolai, H.T., Mandoc, M.M., Blom, P.W.M.: Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011)

    Article  Google Scholar 

  11. Nicolai, H.T., Kuik, M., Wetzelaer, G.A.H., de Boer, B., Campbell, C., Risko, C., Brédas, J.L., Blom, P.W.M.: Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012)

    Article  Google Scholar 

  12. Garcia-Belmonte, G.: Carrier recombination flux in bulk heterojunction polymer:fullerene solar cells: effect of energy disorder on ideality factor. Solid State Electron. 79, 201–205 (2013)

    Article  Google Scholar 

  13. Sah, R.-Y., Noyce, R.N., Shockley, W.: Carrier generation and recombination in pn junctions and pn junction characteristics. Proc. IRE 45, 1228–1243 (1957)

    Article  Google Scholar 

  14. Willemen, J.A.: Dissertation, TU Delft, [http://repository.tudelft.nl/assets/uuid:0771d543-af5f-4579-8a35-0b68d34a1334/emc_willemen_19981016.PDF] 45 (1998)

  15. Pieters, B. E.: Dissertation, TU Delft, [http://repository.tudelft.nl/assets/uuid:83bc5ff4-8e33-4962-9014-68cfbad8226f/pieters_20081111.pdf] 30 (2008)

  16. Baranovskii, S.D.: Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251, 487–525 (2014)

    Article  Google Scholar 

  17. Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)

    Article  Google Scholar 

  18. Hwang, I., McNeill, C.R., Greenham, N.C.: Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. J. Appl. Phys. 106, 094506 (2009)

    Article  Google Scholar 

  19. Häusermann, R., Knapp, E., Moos, M., Reinke, N.A., Flatz, T., Ruhstaller, B.: Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507 (2009)

    Article  Google Scholar 

  20. Knapp, E., Häusermann, R., Schwarzenbach, H.U., Ruhstaller, B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010)

    Article  Google Scholar 

  21. Lianga, C., Wanga, Y., Lib, D., Jib, X., Zhanga, F., Hea, Z.: Modeling and simulation of bulk heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells 127, 67–86 (2014)

    Article  Google Scholar 

  22. Hernández-García, L.F., Cabrera-Arenas, V., Reséndiz-Mendoza, L.M.: On the convergence of the algorithm for simulating organic solar cells. Comput. Phys. Comm. 196, 372–379 (2015)

    Article  Google Scholar 

  23. Garcia-Belmonte, G.: Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance. Sol. Energy Mater. Sol. Cells 94, 2166–2169 (2010)

    Article  Google Scholar 

  24. Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)

    Article  Google Scholar 

  25. Ansari-Rad, M., Garcia-Belmonte, G., Bisquert, J.: Consistent formulation of the crossover from density to velocity dependent recombination in organic solar cells. Appl. Phys. Lett. 107, 073301 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Instituto Politécnico Nacional (IPN) under SIP-projects: 20151949 and 20151871. Two of the authors (L F H and O R S) acknowledges support by PIFI program from the IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cabrera-Arenas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-García, L.F., Ramírez-Sánchez, O., Cabrera-Arenas, V. et al. A Gaussian model for recombination via carrier-trap distributions in organic solar cells. J Comput Electron 15, 1103–1109 (2016). https://doi.org/10.1007/s10825-016-0835-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0835-0

Keywords

Navigation