Journal of Computational Electronics

, Volume 15, Issue 1, pp 3–15 | Cite as

Electro-thermal simulation based on coupled Boltzmann transport equations for electrons and phonons

  • T. T. Trang Nghiêm
  • J. Saint-Martin
  • P. Dollfus
Article

Abstract

To study the thermal effect in nano-transistors, a simulator solving self-consistently the Boltzmann transport equations for both electrons and phonons has been developed. It has been used to investigate the self-heating effects in a 20 nm-long double-gate MOSFET (Fig. 1). A Monte Carlo solver for electrons is coupled with a direct solver for the steady-state phonon transport. The latter is based on the relaxation time approximation. This method is particularly efficient to provide a deep insight of the out-of-equilibrium thermal dissipation occurring at the nanometer scale when the device length is smaller than the mean free path of both charge and thermal carriers. It allows us to evaluate accurately the phonon emission and absorption spectra in both real and energy spaces.

Keywords

Electron-phonon coupling Thermal transport Boltzmann transport equation Silicon MOS Double-gate MOSFET Self-heating effects 

References

  1. 1.
    Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)CrossRefGoogle Scholar
  2. 2.
    Jungemann, C., Meinerzhagen, B.: Hierarchical device simulation: the Monte-Carlo perspective. Springer, NewYork (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80(15), 155430 (2009)CrossRefGoogle Scholar
  4. 4.
    Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)CrossRefGoogle Scholar
  5. 5.
    Lucci, L., et al.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54(5), 1156–1164 (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)CrossRefGoogle Scholar
  7. 7.
    Querlioz, D., et al.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 737–744 (2006)CrossRefGoogle Scholar
  8. 8.
    Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)CrossRefGoogle Scholar
  9. 9.
    Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS transistors: semi-classical transport and applications. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  10. 10.
    Poli, S., et al.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55(11), 2968–2976 (2008)CrossRefGoogle Scholar
  11. 11.
    Cavassilas, N., et al.: One-shot current conserving quantum transport modeling of phonon scattering in n-type double-gate field-effect-transistors. Appl. Phys. Lett. 102(1), 013508 (2013)CrossRefGoogle Scholar
  12. 12.
    Niquet, Y.-M., et al.: Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)CrossRefGoogle Scholar
  13. 13.
    Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)CrossRefGoogle Scholar
  14. 14.
    Ju, Y., Goodson, K.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74(20), 3005–3007 (1999)CrossRefGoogle Scholar
  15. 15.
    Cahill, D.G., et al.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)CrossRefGoogle Scholar
  16. 16.
    Cahill, D.G., et al.: Nanoscale thermal transport. II. 2003–2012. Applied. Phys. Rev. 1(1), 011305 (2014)MathSciNetGoogle Scholar
  17. 17.
    Volz, D.L., Sebastian, Jean-Bernard Saulnier: Clamped nanowire thermal conductivity based on phonon transport equation. Microscale Thermophys. Eng. 5(3), 191–207 (2001)CrossRefGoogle Scholar
  18. 18.
    Terris, D., et al.: Prediction of the thermal conductivity anisotropy of Si nanofilms. Results of several numerical methods. Int. J. Therm. Sci. 48(8), 1467–1476 (2009)CrossRefGoogle Scholar
  19. 19.
    Sellan, D., et al.: Cross-plane phonon transport in thin films. J. Appl. Phys. 108(11), 113524 (2010)CrossRefGoogle Scholar
  20. 20.
    Heino, P.: Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction. Comput. Math. Appl. 59(7), 2351–2359 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nabovati, A., Sellan, D.P., Amon, C.H.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230(15), 5864–5876 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)CrossRefGoogle Scholar
  23. 23.
    Chen, Y., et al.: Monte Carlo simulation of silicon nanowire thermal conductivity. J. Heat Transf. 127(10), 1129–1137 (2005)CrossRefGoogle Scholar
  24. 24.
    Essner, O., et al.: Improved Monte Carlo algorithm of phonon transport in semiconductor nanodevices. J. Phys. 92(1), 012079 (2007)Google Scholar
  25. 25.
    Randrianalisoa, J., Baillis, D.: Monte Carlo simulation of steady-state microscale phonon heat transport. J. Heat Transf. 130(7), 072404 (2008)CrossRefGoogle Scholar
  26. 26.
    Wong, B.T., Francoeur, M., Mengüç, M.Pinar: A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation. Int. J. Heat Mass Transf. 54(9), 1825–1838 (2011)CrossRefMATHGoogle Scholar
  27. 27.
    Hamzeh, H., Aniel, F.: Monte Carlo study of phonon dynamics in III–V compounds. J. Appl. Phys. 109(6), 063511 (2011)CrossRefGoogle Scholar
  28. 28.
    Zebarjadi, M., Shakouri, A., Esfarjani, K.: Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique. Phys. Rev. B 74(19), 195331 (2006)CrossRefGoogle Scholar
  29. 29.
    Rowlette, J., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRefGoogle Scholar
  30. 30.
    Sadi, T., Kelsall, R.W.: Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors. J. Appl. Phys. 107(6), 064506 (2010)CrossRefGoogle Scholar
  31. 31.
    Shi, Y., Aksamija, Z., Knezevic, I.: Self-consistent thermal simulation of GaAs/Al0. 45Ga0. 55As quantum cascade lasers. J. Comput. Electron. 11(1), 144–151 (2012)CrossRefGoogle Scholar
  32. 32.
    Raleva, K., et al.: Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008)CrossRefGoogle Scholar
  33. 33.
    Vasileska, D., et al.: Current progress in modeling self-heating effects in FD SOI devices and nanowire transistors. J. Comput. Electron. 11(3), 238–248 (2012)CrossRefGoogle Scholar
  34. 34.
    Kamakura, Y., et al.: Coupled Monte Carlo simulation of transient electron-phonon transport in nanoscale devices. In: IEEE international conference on simulation of semiconductor processes and devices (SISPAD), 2010Google Scholar
  35. 35.
    Ni, C., et al.: Coupled electro-thermal simulation of MOSFETs. J. Comput. Electron. 11(1), 93–105 (2012)CrossRefGoogle Scholar
  36. 36.
    Ni, C. (ed.): Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics. Purdue University, West Lafayette (2009)Google Scholar
  37. 37.
    Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)CrossRefGoogle Scholar
  38. 38.
    Nghiem, T.T.T., Saint-Martin, J., Dollfus, P.: New insights into self-heating in double-gate transistors by solving Boltzmann transport equations. J. Appl. Phys. 116(7), 074514 (2014)CrossRefGoogle Scholar
  39. 39.
    Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006)Google Scholar
  40. 40.
    Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)CrossRefMATHGoogle Scholar
  41. 41.
    Holland, M.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)CrossRefGoogle Scholar
  42. 42.
    Glassbrenner, C., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134(4A), A1058 (1964)CrossRefGoogle Scholar
  43. 43.
    Debernardi, A., Baroni, S., Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75(9), 1819 (1995)CrossRefGoogle Scholar
  44. 44.
    Menéndez, J., Cardona, M.: Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and \(\alpha \)-Sn: Anharmonic effects. Phys. Rev. B 29, 2051 (1984)CrossRefGoogle Scholar
  45. 45.
    Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87(15), 153106 (2005)CrossRefGoogle Scholar
  46. 46.
    Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)CrossRefGoogle Scholar
  47. 47.
    Asheghi, M., et al.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71(13), 1798–1800 (1997)CrossRefGoogle Scholar
  48. 48.
    Liu, W., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98(12), 123523 (2005)CrossRefGoogle Scholar
  49. 49.
    Heaslet, M.A., Warming, R.F.: Radiative transport and wall temperature slip in an absorbing planar medium. Int. J. Heat Mass Transf. 8(7), 979–994 (1965)CrossRefGoogle Scholar
  50. 50.
    Nghiêm, T.T.T.: Numerical study of electro-thermal effects in silicon devices. University of Paris-Sud, Orsay (2013)Google Scholar
  51. 51.
    Martin, J.S., Bournel, A., Dollfus, P.: On the ballistic transport in nanometer-scaled DG MOSFETs. IEEE Trans. Electron Devices 51(7), 1148–1155 (2004)CrossRefGoogle Scholar
  52. 52.
    Rhew, J.-H., Ren, Z., Lundstrom, M.S.: A numerical study of ballistic transport in a nanoscale MOSFET. Solid State Electron. 46(11), 1899–1906 (2002)CrossRefGoogle Scholar
  53. 53.
    Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRefGoogle Scholar
  54. 54.
    Aubry-Fortuna, V., Dollfus, P., Galdin-Retailleau, S.: Electron effective mobility in strained-Si/Si< sub> 1- x</sub> Ge< sub> x</sub> MOS devices using Monte Carlo simulation. Solid-state electronics 49(8), 1320–1329 (2005)Google Scholar
  55. 55.
    Mohamed, M., et al.: A Conjoined Electron and Thermal Transport Study of Thermal Degradation Induced During Normal Operation of Multigate Transistors. IEEE Trans. Electron Devices 61(4), 976–983 (2014)CrossRefGoogle Scholar
  56. 56.
    Paulavičius, G., Mitin, V.V., Bannov, N.A.: Coupled electron and nonequilibrium optical phonon transport in a GaAs quantum well. J. Appl. Phys. 82(11), 5580–5588 (1997)CrossRefGoogle Scholar
  57. 57.
    Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82(4), 045319 (2010)CrossRefGoogle Scholar
  58. 58.
    Lang, G., et al.: Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 9, 6182 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. T. Trang Nghiêm
    • 1
  • J. Saint-Martin
    • 1
  • P. Dollfus
    • 1
  1. 1.Institute of Fundamental ElectronicsCNRS, University of Paris-Sud, Université Paris SaclayOrsayFrance

Personalised recommendations