Journal of Computational Electronics

, Volume 15, Issue 1, pp 287–294 | Cite as

Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell

  • William Taube Navaraj
  • Beerendra Kumar Yadav
  • Anil Kumar


Optoelectronic two dimensional technology computer aided design simulation of unconstrained four terminal hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) tandem solar cells have been carried out. Tandem solar cell approach is one of the promising approaches to achieve high efficiency solar cell by reducing lattice thermalization loss, but needs extensive optimization as the efficiency depends on a number of parameters. The optoelectronic properties of various materials involved have been taken into consideration and a range of parameters such as top anti reflection coating (ARC) thickness, bottom ARC thickness, a-Si:H solar cell thickness, optical connecting layer thickness, a-Si:H solar cell doping, crystalline silicon solar cells doping etc. have been optimized. The optimization resulted in a simulated efficiency of 19.29 % for an untextured planar solar cell.


TCAD Silicon tandem solar cells Amorphous silicon Crystalline silicon Optimization 


  1. 1.
    Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 44). Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014). doi:10.1002/pip.2525
  2. 2.
    Green, M.A.: The path to 25 % silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009). doi:10.1002/pip.892
  3. 3.
    Atlas User’s Manual: Device Simulation Software. Silvaco Int., Santa Clara, CA (2008)Google Scholar
  4. 4.
    Shaw, J.G., Hack, M.: An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64(9), 4562 (1988). doi:10.1063/1.341258 CrossRefGoogle Scholar
  5. 5.
    Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Meguro, T., Matsuda, T., Kondo, M., Sasaki, T., Tawada, Y.: A high efficiency thin film silicon solar cell and module. Sol. Energy 77(6), 939–949 (2004). doi:10.1016/j.solener.2004.08.028 CrossRefGoogle Scholar
  6. 6.
    Tokyo Electron Ltd.: New record-breaking PV module efficiency has been achieved. (2014). Accessed 7 Nov 2015
  7. 7.
    Perez-Wurfl, I., Ma, L., Lin, D., Hao, X., Green, M.A., Conibeer, G.: Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Sol. Energy Mater. Sol. Cells 100, 65–68 (2012). doi:10.1016/j.solmat.2011.02.029 CrossRefGoogle Scholar
  8. 8.
    Noufi, R., Young, D.L., Coutts, T.J., Gessert, T., Ward, J.S., Duda, A., Wu, X., Romero, M., Dhere, R., Abu Shama, J.: Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 11, pp. 12–14 , 18 May 2003Google Scholar
  9. 9.
    Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E 14(1–2), 96–100 (2002). doi:10.1016/S1386-9477(02)00364-8 CrossRefGoogle Scholar
  10. 10.
    Matsumoto, Y., Miyagi, K., Takakura, H., Okamoto, H., Hamakawa, Y.: a-Si/poly-Si two- and four-terminal tandem type solar cells. In: Photovoltaic Specialists Conference, 1990, Conference Record of the Twenty First IEEE, vol.1422, pp. 1420–1425, 21–25 May 1990Google Scholar
  11. 11.
    Alì, G., Butera, F., Rotundo, N.: Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. J. Comput. Electron. 13(1), 323–328 (2014). doi:10.1007/s10825-013-0533-0 CrossRefGoogle Scholar
  12. 12.
    Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, London (2003)Google Scholar
  13. 13.
    Guha, S., Yang, J.: High-efficiency amorphous silicon alloy based solar cells and modules. National Renewable Energy Laboratory Report (2005). Accessed 7 Nov 2015
  14. 14.
    Murayama, K.: Hopping and radiative recombination at localized band tail states in hydro-genated amorphous silicon. Phys. Status Solidi C 8(1), 198–204 (2011). doi:10.1002/pssc.201000558 CrossRefGoogle Scholar
  15. 15.
    Nguyen, H.T., Baker-Finch, S.C., Macdonald, D.: Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence. Appl. Phys. Lett. 104(11), 112105 (2014). doi:10.1063/1.4869295 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • William Taube Navaraj
    • 1
    • 2
    • 3
  • Beerendra Kumar Yadav
    • 1
  • Anil Kumar
    • 1
    • 2
  1. 1.Sensors and Nanotechnology GroupCSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia
  3. 3.Electronics and Nanoscale Engineering Division, College of Science and EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations