Skip to main content

Advertisement

Log in

Physics-based simulation of 4H-SIC DMOSFET structure under inductive switching

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The integration of high power silicon carbide (SiC) Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) in today’s power systems drives the demand for deeper understanding of the device switching characteristics by way of device simulation. Applications like motor drive require power MOSFETs to drive highly inductive loads which increase the switching power loss by extending the voltage and current crossover, a situation which gets exacerbated by the presence of parasitic inductance. A 2D model of a 1200 V 4H-SiC vertical DMOSFET half-cell was developed using a commercially available TCAD software package to investigate the electro-thermal switching characteristics using clamped inductive switching circuit for ON state drain current density values up to \(100\,\hbox {A/cm}^{2}\) at an ambient lattice temperature of 300 K. Device physics-based models were included to account for carrier mobility, carrier generation and recombination, impact ionization and lattice heating. In order to analyze the areas of localized lattice heating, the lattice temperature distribution was monitored during simulation. The clamped inductive switching circuit simulations were performed with and without the addition of parasitic electrode inductance to observe the difference in switching energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Shenai, K., Scott, R.S., Jayant, B.: Optimum semiconductors for high-power electronics. IEEE Trans. Electron. Dev. 36(9), 1811–1823 (1989)

    Article  Google Scholar 

  2. Elasser, A., Chow, T.P.: Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE 90(6), 969–986 (2002)

    Article  Google Scholar 

  3. Liang, Z., Ning, P., Wang, F.: Development of Advanced All-SiC Power Modules. IEEE Trans. Power Electron. 29(5), 2289–2295 (2014)

    Article  Google Scholar 

  4. Richmond, J., Leslie, S., Hull, B., Das, M., Agarwal, A., Palmour, J.: Roadmap for megawatt class power switch modules utilizing large area silicon carbide MOSFETs and JBS diodes. In: Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE, pp. 106–111 (20–24 Sept. 2009)

  5. Zhang, Q., Callanan, R., Das, M.K., Ryu, S.-H., Agarwal, A.K., Palmour, J.W.: SiC power devices for microgrids. IEEE Trans. Power Electron. 25(12), 2889–2896 (2010)

    Article  Google Scholar 

  6. Lu, J., Sun, K., Wu, H., Xing, Y., Huang, L.: Modeling of SiC MOSFET with temperature dependent parameters and its applications. In: Applied power electronics conference and exposition (APEC), 2013 twenty-eighth annual IEEE, pp.540–544 (17–21 March 2013)

  7. Sridharan, S., Venkatachalam, A., Yoder, P.D.: Electrothermal analysis of AlGaN/GaN high electron mobility transistors. J. Comput. Electron. 7(3), 236–239 (2008)

    Article  Google Scholar 

  8. Giles, M.D.: TCAD process/device modeling challenges and opportunities for the next decade. J. Comput. Electron. 3(3–4), 177–182 (2004)

    Article  Google Scholar 

  9. Ni, C., et al.: Coupled electro-thermal simulation of MOSFETs. J. Comput. Electron. 11(1), 93–105 (2012)

    Article  Google Scholar 

  10. Pushpakaran, B.N., Bayne, S.B., Ogunniyi, A.A.: Electro-thermal transient simulation of silicon carbide power MOSFET. In: Pulsed Power Conference (PPC), 2013 19th IEEE, pp.1–6 (16–21 June 2013)

  11. Baliga, B.J.: Power MOSFETs. In: Fundamentals of Power Semiconductor Devices, pp. 289–312. Springer, Berlin (2008)

  12. Salah, T.B., Buttay, C., Allard, B., Morel, H., Ghedira, S., Besbes, K.: Experimental analysis of punch-through conditions in power P-I-N diodes. IEEE Trans. Power Electron. 22(1), 13–20 (2007)

    Article  Google Scholar 

  13. Potbhare, S., Goldsman, N., Pennington, G., McGarrity, J.M., Lelis, A.: Characterization of 4H-SiC MOSFET interface trap charge density using a first principles coulomb scattering mobility model and device simulation. In: International Conference on Simulation of Semiconductor Processes and Devices, 2005. SISPAD 2005, pp. 95–98 (01–03 Sept. 2005)

  14. Biondi, T., et al.: Effect of layout parasitics on the current distribution of power MOSFETs operated at high switching frequency. J. Comput. Electron. 5(2), 149–153 (2006)

    Article  Google Scholar 

  15. Broadmeadow, M.A.H., Walker, G.R., Ledwich, G.F.: Automated power semiconductor switching performance feature extraction from experimental double-pulse waveform data. In: Power Engineering Conference (AUPEC), 2014 Australasian Universities, pp. 1–6 (Sept. 28–Oct. 1 2014)

  16. Wright, N.G., Johnson, C.M., O’Neill, A.G.: 4H-SiC power TCAD. In: IEE Colloquium on New Developments in Power Semiconductor Devices, (Digest No: 1996/046), pp. 6/1–6/5 (21 Jun 1996)

  17. Marinella, M.J., Schroder, D.K., Gilyong, C., Loboda, M.J., Isaacs-Smith, T., Williams, J.R.: Carrier generation lifetimes in 4H-SiC MOS capacitors. IEEE Trans. Electron. Dev. 57(8), 1910–1923 (2010)

    Article  Google Scholar 

  18. Levinshtein, M.E., Mnatsakanov, T.T., Ivanov, P., Palmour, J.W., Rumyantsev, S.L., Singh, R., Yurkov, S.N.: “Paradoxes” of carrier lifetime measurements in high-voltage SiC diodes. IEEE Trans. Electron. Dev. 48(8), 1703–1710 (2001)

    Article  Google Scholar 

  19. Ivanov, P.A., Levinshtein, M.E., Irvine, K.G., Kordina, O., Palmour, J.W., Rumyantsev, S.L., Singh, R.: High hole lifetime (\(3.8~\upmu \text{ s }\)) in 4H-SiC diodes with 5.5 kV blocking voltage. Electron. Lett. 35(16), 1382–1383 (1999)

    Article  Google Scholar 

  20. Fu, R., Grekov, A., Peng, K., Santi, E.: Parasitic modeling for accurate inductive switching simulation of converters using SiC devices. In: Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, pp. 1259–1265 (15–19 Sept. 2013)

  21. Narayanan, M.R., Al-Nashash, H., Pal, D., Chandra, M.: Thermal model of MOSFET with SELBOX structure. J. Comput. Electron. 12(4), 803–811 (2013)

    Article  Google Scholar 

  22. Pushpakaran, B.N., Bayne, S.B., Ogunniyi, A.A.: Thermal analysis of 4H-SiC DMOSFET structure under resistive switching. In: Power Modulator and High Voltage Conference (IPMHVC), 2014 IEEE International, pp. 523–526 (1–5 June 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bejoy N. Pushpakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpakaran, B.N., Bayne, S.B. & Ogunniyi, A.A. Physics-based simulation of 4H-SIC DMOSFET structure under inductive switching. J Comput Electron 15, 191–199 (2016). https://doi.org/10.1007/s10825-015-0766-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0766-1

Keywords

Navigation