Skip to main content
Log in

A numerical analysis of progressive and abrupt reset in conductive bridging RRAM

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The authors investigate the conduction filament (CF) properties of a Cu\(\textit{HfO}_{2}\) based conductive bridging resistive memory device by implementing a numerical simulation of the low and high resistive states, starting from a random initial distribution of oxygen vacancies (OV) defects states in the resistive switching layer (RSL) to a formed CF and ending in a ruptured state. A calculation approach which accounts for both the statistical nature of the system and the synergetic effect of OV and Cu species on the overall conductance is presented. By defining a disorder parameter, the correlation between the OV initial distribution and the CF reset behavior is analyzed. A dependence of the reset transition, being either abrupt or progressive, on the physical shape of the CF which in turn is affected by this disorder is shown to exist based on the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tseng, T.Y., Sze, S.M.: An introduction to nonvolatile memories. In: Tseng, T.Y., Sze, S.M. (eds.) Nonvolatile Memories: Materials, Devices, and Applications, pp. 1–9. American Scientific Publishers, Valencia (2012)

    Google Scholar 

  2. Wong, H.-S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012). doi:10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  3. Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, monte carlo simulation, and experimental characterization. In: IEDM, pp. 17.3.1–17.3.4. (2011). doi:10.1109/IEDM.2011.6131572

  4. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). doi:10.1038/nmat2023

    Article  Google Scholar 

  5. Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N.: Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron Devices 56(5), 1040–1047 (2009)

    Article  Google Scholar 

  6. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Berco, D., Tseng, T.Y.: A comprehensive study of bipolar operation in resistive switching memory devices. J. Comput. Electron. (2015). doi:10.1007/s10825-015-0736-7

  8. Celano, U., et al.: Progressive vs. abrupt reset behavior in conductive bridging devices: a C-AFM tomography study. In: IEDM, pp. 14.1.1–14.1.4. (2014). doi:10.1109/IEDM.2014.7047048

  9. Molas, G., et al.: Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances. In: IEDM, pp. 6.1.1–6.1.4. (2014). doi:10.1109/IEDM.2014.7046993

  10. Milosevic, N.D., Maglic, K.D.: Thermophysical properties of solid phase hafnium at high temperatures. Int. J. Thermophys. 27(2), 530–553 (2006)

    Article  Google Scholar 

  11. Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM–part II: modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012). doi:10.1109/TED.2012.2202320

    Article  Google Scholar 

  12. Banno, N., Sakamoto, T., Iguchi, N., Sunamura, H., Terabe, K., Hasegawa, T., Aono, M.: Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch. IEEE Trans. Electron Devices 55(11), 3283–3287 (2008). doi:10.1109/TED.2008.2004246

    Article  Google Scholar 

  13. Wang, Y., et al.: Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21(4), 045202 (2010). doi:10.1088/0957-4484/21/4/045202

    Article  Google Scholar 

  14. Lu, J.L., et al.: Optimal migration route of Cu in HfO2. J. Semiconductors 35(1), 013001 (2014)

    Article  Google Scholar 

  15. Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011). doi:10.1109/TED.2011.2167513

    Article  Google Scholar 

  16. Guan, X., Yu, S., Wong, H.-S.P.: On the switching parameter variation of metal oxide RRAM—part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)

    Article  Google Scholar 

  17. Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Zeng, L., Gao, B., Du, G., Zhang, X., Kang, J.F.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Devices 60(12), 4090–4097 (2013). doi:10.1109/TED.2013.2287755

    Article  Google Scholar 

  18. Guy, J., et al.: Experimental and theoretical understanding of forming, SET and RESET operations in conductive bridge RAM (CBRAM) for memory stack optimization. In: IEDM, pp. 6.5.1-6.5.4. (2014). doi:10.1109/IEDM.2014.7046997

  19. Zheng, J.X., Ceder, G., Maxisch, T., Chim, W.K., Choi, W.K.: First-principles study of native point defects in hafnia and zirconia. Phys. Rev. B 75, 104112 (2007). doi:10.1103/PhysRevB.75.104112

    Article  Google Scholar 

  20. Reed, T.B.: Free Energy of Formation of Binary Compounds. MIT Press, Cambridge (1971)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Council, Taiwan, under Project No. NSC 102-2221-E-009-134-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Berco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berco, D., Tseng, TY. A numerical analysis of progressive and abrupt reset in conductive bridging RRAM. J Comput Electron 15, 586–594 (2016). https://doi.org/10.1007/s10825-015-0744-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0744-7

Keywords

Navigation