Abstract
We employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.
This is a preview of subscription content, access via your institution.








Notes
This case is to be contrasted with the optical limit, in which a system is assumed only weakly coupled with the environment and energy levels spaced so far apart that the secular or rotating wave approximation (RWA) can be emplyed. While tenuous in current-carrying nanostructures, the weak approximation and RWA are nonetheless often applied to derive master equations in quantum transport [39].
References
Weyl, H.: Quantenmechanik und gruppentheorie. Physik. Z. 46, 1 (1927)
Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)
Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12(7), 405 (1946). ISSN 0031-8914
Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99 (1949). ISSN 1469-8064
Tatarskii, V .I.: The Wigner representation of quantum mechanics. Sov. Phys. Uspekhi 26(4), 311 (1983)
Hillery, M., et al.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121 (1984). ISSN 0370-1573
Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys 67(7), 1033 (2004)
Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)
Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Weinheim (2002)
Baker, G.A., McCarthy, I.E., Porter, C.E.: Application of the phase space quasi-probability distribution to the nuclear shell model. Phys. Rev. 120, 254 (1960)
Shlomo, S., Prakash, M.: Phase space distribution of an n-dimensional harmonic oscillator. Nucl. Phys. A 357(1), 157 (1981). ISSN 0375-9474
Belitsky, A., Ji, X., Yuan, F.: Quark imaging in the proton via quantum phase-space distributions. Phys. Rev. D 69, 074014 (2004)
Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. Phys 8(5), 1097 (1967)
Frensley, W.R.: Transient response of a tunneling device obtainefrom the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)
Kluksdahl, N.C., et al.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)
Jensen, K.L., Buo, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991)
Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996)
Bertoni, A., et al.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999 (1999)
Bordone, P., et al.: Quantum transport of electrons in open nanostructures with the Wigner-function formalism. Phys. Rev. B 59, 3060 (1999)
Buot, F.A., et al.: Emitter quantization and double hysteresis in resonant-tunneling structures: a nonlinear model of charge oscillation and current bistability. Phys. Rev. B 61, 5644 (2000)
Garcia-Garcia, J., Martin, F.: Simulation of multilayered resonant tunneling diodes using coupled Wigner and boltzmann distribution function approaches. Appl. Phys. Lett. 77, 3412 (2000)
Shifren, L., Ferry, D.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 34, 217 (2001). ISSN 0375-9601
Nedjalkov, M., et al.: Unified particle approach to Wigner-boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)
Querlioz, D., et al.: An improved Wigner monte-carlo technique for the self-consistent simulation of rtds. J. Comput. Electron. 5, 443 (2006)
Dai, Z .H., et al.: Dynamical behavior of electron transport in algaas/gaas double-barrier structures under a high-frequency radiation field. Eur. Phys. J. B 60, 4, 439 (2007). ISSN 1434-6028
Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 9, 093710 (2011)
Wojcik, P., et al.: Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode. Phys. Rev. B 86, 165318 (2012)
Jonasson, O., Knezevic, I.: Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure. Phys. Rev. B 90, 165415 (2014)
Querlioz, D., et al.: Wigner-boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324 (2009)
Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357(1), 1 (2002). ISSN 0370-1573
Kumar, S., et al.: A 1.8-Thz quantum cascade laser operating significantly above the temperature of [planck][omega]/kB. Nat. Phys. 7, 166 (2011)
Jacoboni, C., et al.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387 (2001)
Nedjalkov, M., Kosina, H., Schwaha, P.: Device modeling in the Wigner picture. J. Comput. Electron. 9, 218 (2010)
Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid State Electron. 43, 12, 2243 (1999). ISSN 0038-1101
Jonasson, O., Knezevic, I.: On the boundary conditions for the Wigner transport equation (in prep)
Dias, N .C., Prata, J .N.: Admissible states in quantum phase space. Ann. Phys. 313, 1, 110 (2004). ISSN 0003-4916
Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000). ISBN 0521631343,9780521631341
Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. Wiley, Hoboken (2013). ISBN 9781118618448
Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013). ISSN 1569-8025
Heinz-Peter Breuer, F .P.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002). ISBN 0198520638,9780198520634
Diosi, L.: Calderia-leggett master equation and medium temperatures. Phys. A 199, 3-4, 517 (1993). ISSN 0378-4371
Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)
Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1, 1 (1981). ISSN 0370-1573
Caldeira, A., Leggett, A.: Path integral approach to quantum brownian motion. Phys. A 121, 3, 587 (1983). ISSN 0378-4371
Sellier, J., Nedjalkov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 1 (2015). ISSN 0370-1573
Sellier, J .M.: A signed particle formulation of non-relativistic quantum mechanics. J. Comput. Phys. 297, 0, 254 (2015). ISSN 0021-9991
Sellier, J .M., et al.: Decoherence and time reversibility: the role of randomness at interfaces. J. Appl. Phys. 114, 17, 174902 (2013)
Sellier, J., et al.: Two-dimensional transient Wigner particle model. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, pp. 404–407 (2013) ISSN 1946–1569
Sellier, J., Dimov, I.: The WignerBoltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185, 10, 2427 (2014). ISSN 0010-4655
Ellinghaus, P., et al.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151 (2015). ISSN 1569-8025
Acknowledgments
The authors gratefully acknowledge support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712. The work was performed using the resources of the UW-Madison Center for High Throughput Computing (CHTC).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jonasson, O., Knezevic, I. Dissipative transport in superlattices within the Wigner function formalism. J Comput Electron 14, 879–887 (2015). https://doi.org/10.1007/s10825-015-0734-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-015-0734-9
Keywords
- Wigner function
- Wigner transport equation
- Superlattice
- Quantum transport
- Dissipation
- Decoherence
- Density matrix