Journal of Computational Electronics

, Volume 14, Issue 4, pp 879–887 | Cite as

Dissipative transport in superlattices within the Wigner function formalism

Article

Abstract

We employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.

Keywords

Wigner function Wigner transport equation Superlattice Quantum transport Dissipation Decoherence Density matrix 

References

  1. 1.
    Weyl, H.: Quantenmechanik und gruppentheorie. Physik. Z. 46, 1 (1927)CrossRefMATHGoogle Scholar
  2. 2.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)CrossRefGoogle Scholar
  3. 3.
    Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12(7), 405 (1946). ISSN 0031-8914MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99 (1949). ISSN 1469-8064MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tatarskii, V .I.: The Wigner representation of quantum mechanics. Sov. Phys. Uspekhi 26(4), 311 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hillery, M., et al.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121 (1984). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys 67(7), 1033 (2004)CrossRefGoogle Scholar
  8. 8.
    Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)Google Scholar
  9. 9.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Weinheim (2002)Google Scholar
  10. 10.
    Baker, G.A., McCarthy, I.E., Porter, C.E.: Application of the phase space quasi-probability distribution to the nuclear shell model. Phys. Rev. 120, 254 (1960)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shlomo, S., Prakash, M.: Phase space distribution of an n-dimensional harmonic oscillator. Nucl. Phys. A 357(1), 157 (1981). ISSN 0375-9474MathSciNetCrossRefGoogle Scholar
  12. 12.
    Belitsky, A., Ji, X., Yuan, F.: Quark imaging in the proton via quantum phase-space distributions. Phys. Rev. D 69, 074014 (2004)CrossRefGoogle Scholar
  13. 13.
    Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. Phys 8(5), 1097 (1967)CrossRefGoogle Scholar
  14. 14.
    Frensley, W.R.: Transient response of a tunneling device obtainefrom the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)CrossRefGoogle Scholar
  15. 15.
    Kluksdahl, N.C., et al.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)CrossRefGoogle Scholar
  16. 16.
    Jensen, K.L., Buo, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991)CrossRefGoogle Scholar
  17. 17.
    Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996)CrossRefGoogle Scholar
  18. 18.
    Bertoni, A., et al.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999 (1999)Google Scholar
  19. 19.
    Bordone, P., et al.: Quantum transport of electrons in open nanostructures with the Wigner-function formalism. Phys. Rev. B 59, 3060 (1999)CrossRefGoogle Scholar
  20. 20.
    Buot, F.A., et al.: Emitter quantization and double hysteresis in resonant-tunneling structures: a nonlinear model of charge oscillation and current bistability. Phys. Rev. B 61, 5644 (2000)CrossRefGoogle Scholar
  21. 21.
    Garcia-Garcia, J., Martin, F.: Simulation of multilayered resonant tunneling diodes using coupled Wigner and boltzmann distribution function approaches. Appl. Phys. Lett. 77, 3412 (2000)CrossRefGoogle Scholar
  22. 22.
    Shifren, L., Ferry, D.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 34, 217 (2001). ISSN 0375-9601CrossRefGoogle Scholar
  23. 23.
    Nedjalkov, M., et al.: Unified particle approach to Wigner-boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)CrossRefGoogle Scholar
  24. 24.
    Querlioz, D., et al.: An improved Wigner monte-carlo technique for the self-consistent simulation of rtds. J. Comput. Electron. 5, 443 (2006)CrossRefGoogle Scholar
  25. 25.
    Dai, Z .H., et al.: Dynamical behavior of electron transport in algaas/gaas double-barrier structures under a high-frequency radiation field. Eur. Phys. J. B 60, 4, 439 (2007). ISSN 1434-6028Google Scholar
  26. 26.
    Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 9, 093710 (2011)CrossRefGoogle Scholar
  27. 27.
    Wojcik, P., et al.: Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode. Phys. Rev. B 86, 165318 (2012)CrossRefGoogle Scholar
  28. 28.
    Jonasson, O., Knezevic, I.: Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure. Phys. Rev. B 90, 165415 (2014)CrossRefGoogle Scholar
  29. 29.
    Querlioz, D., et al.: Wigner-boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324 (2009)CrossRefGoogle Scholar
  30. 30.
    Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357(1), 1 (2002). ISSN 0370-1573CrossRefMATHGoogle Scholar
  31. 31.
    Kumar, S., et al.: A 1.8-Thz quantum cascade laser operating significantly above the temperature of [planck][omega]/kB. Nat. Phys. 7, 166 (2011)CrossRefGoogle Scholar
  32. 32.
    Jacoboni, C., et al.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387 (2001)CrossRefGoogle Scholar
  33. 33.
    Nedjalkov, M., Kosina, H., Schwaha, P.: Device modeling in the Wigner picture. J. Comput. Electron. 9, 218 (2010)CrossRefGoogle Scholar
  34. 34.
    Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid State Electron. 43, 12, 2243 (1999). ISSN 0038-1101Google Scholar
  35. 35.
    Jonasson, O., Knezevic, I.: On the boundary conditions for the Wigner transport equation (in prep)Google Scholar
  36. 36.
    Dias, N .C., Prata, J .N.: Admissible states in quantum phase space. Ann. Phys. 313, 1, 110 (2004). ISSN 0003-4916MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000). ISBN 0521631343,9780521631341CrossRefGoogle Scholar
  38. 38.
    Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. Wiley, Hoboken (2013). ISBN 9781118618448Google Scholar
  39. 39.
    Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013). ISSN 1569-8025CrossRefGoogle Scholar
  40. 40.
    Heinz-Peter Breuer, F .P.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002). ISBN 0198520638,9780198520634Google Scholar
  41. 41.
    Diosi, L.: Calderia-leggett master equation and medium temperatures. Phys. A 199, 3-4, 517 (1993). ISSN 0378-4371CrossRefGoogle Scholar
  42. 42.
    Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)CrossRefGoogle Scholar
  43. 43.
    Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1, 1 (1981). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  44. 44.
    Caldeira, A., Leggett, A.: Path integral approach to quantum brownian motion. Phys. A 121, 3, 587 (1983). ISSN 0378-4371MathSciNetCrossRefGoogle Scholar
  45. 45.
    Sellier, J., Nedjalkov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 1 (2015). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sellier, J .M.: A signed particle formulation of non-relativistic quantum mechanics. J. Comput. Phys. 297, 0, 254 (2015). ISSN 0021-9991MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sellier, J .M., et al.: Decoherence and time reversibility: the role of randomness at interfaces. J. Appl. Phys. 114, 17, 174902 (2013)CrossRefGoogle Scholar
  48. 48.
    Sellier, J., et al.: Two-dimensional transient Wigner particle model. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, pp. 404–407 (2013) ISSN 1946–1569Google Scholar
  49. 49.
    Sellier, J., Dimov, I.: The WignerBoltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185, 10, 2427 (2014). ISSN 0010-4655CrossRefGoogle Scholar
  50. 50.
    Ellinghaus, P., et al.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151 (2015). ISSN 1569-8025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of Wisconsin – MadisonMadisonUSA

Personalised recommendations