Journal of Computational Electronics

, Volume 14, Issue 4, pp 879–887 | Cite as

Dissipative transport in superlattices within the Wigner function formalism



We employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.


Wigner function Wigner transport equation Superlattice Quantum transport Dissipation Decoherence Density matrix 


  1. 1.
    Weyl, H.: Quantenmechanik und gruppentheorie. Physik. Z. 46, 1 (1927)CrossRefMATHGoogle Scholar
  2. 2.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)CrossRefGoogle Scholar
  3. 3.
    Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12(7), 405 (1946). ISSN 0031-8914MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99 (1949). ISSN 1469-8064MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tatarskii, V .I.: The Wigner representation of quantum mechanics. Sov. Phys. Uspekhi 26(4), 311 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hillery, M., et al.: Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121 (1984). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys 67(7), 1033 (2004)CrossRefGoogle Scholar
  8. 8.
    Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)Google Scholar
  9. 9.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Weinheim (2002)Google Scholar
  10. 10.
    Baker, G.A., McCarthy, I.E., Porter, C.E.: Application of the phase space quasi-probability distribution to the nuclear shell model. Phys. Rev. 120, 254 (1960)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shlomo, S., Prakash, M.: Phase space distribution of an n-dimensional harmonic oscillator. Nucl. Phys. A 357(1), 157 (1981). ISSN 0375-9474MathSciNetCrossRefGoogle Scholar
  12. 12.
    Belitsky, A., Ji, X., Yuan, F.: Quark imaging in the proton via quantum phase-space distributions. Phys. Rev. D 69, 074014 (2004)CrossRefGoogle Scholar
  13. 13.
    Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. Phys 8(5), 1097 (1967)CrossRefGoogle Scholar
  14. 14.
    Frensley, W.R.: Transient response of a tunneling device obtainefrom the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)CrossRefGoogle Scholar
  15. 15.
    Kluksdahl, N.C., et al.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)CrossRefGoogle Scholar
  16. 16.
    Jensen, K.L., Buo, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991)CrossRefGoogle Scholar
  17. 17.
    Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996)CrossRefGoogle Scholar
  18. 18.
    Bertoni, A., et al.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999 (1999)Google Scholar
  19. 19.
    Bordone, P., et al.: Quantum transport of electrons in open nanostructures with the Wigner-function formalism. Phys. Rev. B 59, 3060 (1999)CrossRefGoogle Scholar
  20. 20.
    Buot, F.A., et al.: Emitter quantization and double hysteresis in resonant-tunneling structures: a nonlinear model of charge oscillation and current bistability. Phys. Rev. B 61, 5644 (2000)CrossRefGoogle Scholar
  21. 21.
    Garcia-Garcia, J., Martin, F.: Simulation of multilayered resonant tunneling diodes using coupled Wigner and boltzmann distribution function approaches. Appl. Phys. Lett. 77, 3412 (2000)CrossRefGoogle Scholar
  22. 22.
    Shifren, L., Ferry, D.: Particle Monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 34, 217 (2001). ISSN 0375-9601CrossRefGoogle Scholar
  23. 23.
    Nedjalkov, M., et al.: Unified particle approach to Wigner-boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)CrossRefGoogle Scholar
  24. 24.
    Querlioz, D., et al.: An improved Wigner monte-carlo technique for the self-consistent simulation of rtds. J. Comput. Electron. 5, 443 (2006)CrossRefGoogle Scholar
  25. 25.
    Dai, Z .H., et al.: Dynamical behavior of electron transport in algaas/gaas double-barrier structures under a high-frequency radiation field. Eur. Phys. J. B 60, 4, 439 (2007). ISSN 1434-6028Google Scholar
  26. 26.
    Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 9, 093710 (2011)CrossRefGoogle Scholar
  27. 27.
    Wojcik, P., et al.: Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode. Phys. Rev. B 86, 165318 (2012)CrossRefGoogle Scholar
  28. 28.
    Jonasson, O., Knezevic, I.: Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure. Phys. Rev. B 90, 165415 (2014)CrossRefGoogle Scholar
  29. 29.
    Querlioz, D., et al.: Wigner-boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324 (2009)CrossRefGoogle Scholar
  30. 30.
    Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357(1), 1 (2002). ISSN 0370-1573CrossRefMATHGoogle Scholar
  31. 31.
    Kumar, S., et al.: A 1.8-Thz quantum cascade laser operating significantly above the temperature of [planck][omega]/kB. Nat. Phys. 7, 166 (2011)CrossRefGoogle Scholar
  32. 32.
    Jacoboni, C., et al.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387 (2001)CrossRefGoogle Scholar
  33. 33.
    Nedjalkov, M., Kosina, H., Schwaha, P.: Device modeling in the Wigner picture. J. Comput. Electron. 9, 218 (2010)CrossRefGoogle Scholar
  34. 34.
    Kim, K.-Y., Lee, B.: On the high order numerical calculation schemes for the Wigner transport equation. Solid State Electron. 43, 12, 2243 (1999). ISSN 0038-1101Google Scholar
  35. 35.
    Jonasson, O., Knezevic, I.: On the boundary conditions for the Wigner transport equation (in prep)Google Scholar
  36. 36.
    Dias, N .C., Prata, J .N.: Admissible states in quantum phase space. Ann. Phys. 313, 1, 110 (2004). ISSN 0003-4916MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000). ISBN 0521631343,9780521631341CrossRefGoogle Scholar
  38. 38.
    Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. Wiley, Hoboken (2013). ISBN 9781118618448Google Scholar
  39. 39.
    Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013). ISSN 1569-8025CrossRefGoogle Scholar
  40. 40.
    Heinz-Peter Breuer, F .P.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002). ISBN 0198520638,9780198520634Google Scholar
  41. 41.
    Diosi, L.: Calderia-leggett master equation and medium temperatures. Phys. A 199, 3-4, 517 (1993). ISSN 0378-4371CrossRefGoogle Scholar
  42. 42.
    Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)CrossRefGoogle Scholar
  43. 43.
    Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1, 1 (1981). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  44. 44.
    Caldeira, A., Leggett, A.: Path integral approach to quantum brownian motion. Phys. A 121, 3, 587 (1983). ISSN 0378-4371MathSciNetCrossRefGoogle Scholar
  45. 45.
    Sellier, J., Nedjalkov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 1 (2015). ISSN 0370-1573MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sellier, J .M.: A signed particle formulation of non-relativistic quantum mechanics. J. Comput. Phys. 297, 0, 254 (2015). ISSN 0021-9991MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sellier, J .M., et al.: Decoherence and time reversibility: the role of randomness at interfaces. J. Appl. Phys. 114, 17, 174902 (2013)CrossRefGoogle Scholar
  48. 48.
    Sellier, J., et al.: Two-dimensional transient Wigner particle model. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013, pp. 404–407 (2013) ISSN 1946–1569Google Scholar
  49. 49.
    Sellier, J., Dimov, I.: The WignerBoltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185, 10, 2427 (2014). ISSN 0010-4655CrossRefGoogle Scholar
  50. 50.
    Ellinghaus, P., et al.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151 (2015). ISSN 1569-8025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of Wisconsin – MadisonMadisonUSA

Personalised recommendations