Skip to main content

The Wigner equation in the presence of electromagnetic potentials

Abstract

An analysis of the possible formulations of the Wigner equation under a general gauge for the electric field is presented with an emphasis on the computational aspects of the problem. The numerical peculiarities of those formulations enable alternative computational strategies based on existing numerical methods applied in the Wigner formalism, such as finite difference or stochastic particle methods. The phase space formulation of the problem along with certain relations to classical mechanics offers an insight about the role of the gauge transforms in quantum mechanics.

This is a preview of subscription content, access via your institution.

References

  1. Lorenz, L.: On the identity of the vibrations of light with electrical currents. Philos. Mag. 34, 287–301 (1867)

    Google Scholar 

  2. Bloch, F.: Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik 52, 555–600 (1929). doi:10.1007/BF01339455

    Article  Google Scholar 

  3. Wannier, G.H.: Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys. Rev. 117, 432–439 (1960). doi:10.1103/PhysRev.117.432

    MATH  MathSciNet  Article  Google Scholar 

  4. Houston, W.V.: Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940). doi:10.1103/PhysRev.57.184

    MathSciNet  Article  Google Scholar 

  5. Rossi, F.: Bloch oscillations and Wannier–Stark localization in semiconductor superlattices. In: Schöll, E. (ed.) Theory of Transport Properties of Semiconductor Nanostructures. Electronic Materials Series, vol. 4, pp. 283–320. Springer, Berlin (1998). doi:10.1007/978-1-4615-5807-1_9

  6. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. Lett. 40, 749–759 (1932). doi:10.1103/PhysRev.40.749

    Google Scholar 

  7. Kubo, R.: Wigner representation of quantum operators and its applications to electrons in a magnetic field. J. Phys. Soc. Jpn. 11, 2127–2139 (1964). doi:10.1143/JPSJ.19.2127

    Article  Google Scholar 

  8. Stratonovich, R.L.: Kalibrovochno-invariantnyj analog raspredeleniya Wignera (in Russian). (Gauge-invariant analog of the Wigner distribution). Doklady Akademii Nauk SSSR 109, 72–75 (1956)

    MathSciNet  Google Scholar 

  9. Haas, F., Zamanian, J., Marklund, M., Brodin, G.: Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory. N. J. Phys. 12, 073027 (2010). doi:10.1088/1367-2630/12/7/073027

    Article  Google Scholar 

  10. Serimaa, O.T., Javanainen, J., Varro, S.: Gauge independent Wigner functions: general formulation. Phys. Rev. A 33, 2913–2927 (1986). doi:10.1103/PhysRevA.33.2913

    MathSciNet  Article  Google Scholar 

  11. Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 289–358. Springer, New York (2011). doi:10.1007/978-1-4419-8840-9_5

  12. Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987). doi:10.1103/PhysRevB.36.1570

    Article  Google Scholar 

  13. Shifren, L., Ferry, D.K.: A Wigner function based ensemble Monte Carlo approach for accurate incorporation of quantum effects in device simulation. J. Comput. Electron. 1, 55–58 (2002). doi:10.1023/A:1020711726836

  14. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004). doi:10.1103/PhysRevB.70.115319

    Article  Google Scholar 

  15. Querlioz, D., Dollfus, P., Do, V.N., Bournel, A., Nguyen, V.L.: An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs. J. Comput. Electron. 5, 443–446 (2006). doi:10.1007/s10825-006-0044-3

    Article  Google Scholar 

  16. Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015). doi:10.1016/j.jcp.2014.12.026

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Nedjalkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nedjalkov, M., Weinbub, J., Ellinghaus, P. et al. The Wigner equation in the presence of electromagnetic potentials. J Comput Electron 14, 888–893 (2015). https://doi.org/10.1007/s10825-015-0732-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0732-y

Keywords

  • Wigner function
  • Electromagnetic potentials
  • Gauge transform