Lorenz, L.: On the identity of the vibrations of light with electrical currents. Philos. Mag. 34, 287–301 (1867)
Google Scholar
Bloch, F.: Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik 52, 555–600 (1929). doi:10.1007/BF01339455
Article
Google Scholar
Wannier, G.H.: Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys. Rev. 117, 432–439 (1960). doi:10.1103/PhysRev.117.432
MATH
MathSciNet
Article
Google Scholar
Houston, W.V.: Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940). doi:10.1103/PhysRev.57.184
MathSciNet
Article
Google Scholar
Rossi, F.: Bloch oscillations and Wannier–Stark localization in semiconductor superlattices. In: Schöll, E. (ed.) Theory of Transport Properties of Semiconductor Nanostructures. Electronic Materials Series, vol. 4, pp. 283–320. Springer, Berlin (1998). doi:10.1007/978-1-4615-5807-1_9
Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. Lett. 40, 749–759 (1932). doi:10.1103/PhysRev.40.749
Google Scholar
Kubo, R.: Wigner representation of quantum operators and its applications to electrons in a magnetic field. J. Phys. Soc. Jpn. 11, 2127–2139 (1964). doi:10.1143/JPSJ.19.2127
Article
Google Scholar
Stratonovich, R.L.: Kalibrovochno-invariantnyj analog raspredeleniya Wignera (in Russian). (Gauge-invariant analog of the Wigner distribution). Doklady Akademii Nauk SSSR 109, 72–75 (1956)
MathSciNet
Google Scholar
Haas, F., Zamanian, J., Marklund, M., Brodin, G.: Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory. N. J. Phys. 12, 073027 (2010). doi:10.1088/1367-2630/12/7/073027
Article
Google Scholar
Serimaa, O.T., Javanainen, J., Varro, S.: Gauge independent Wigner functions: general formulation. Phys. Rev. A 33, 2913–2927 (1986). doi:10.1103/PhysRevA.33.2913
MathSciNet
Article
Google Scholar
Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 289–358. Springer, New York (2011). doi:10.1007/978-1-4419-8840-9_5
Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987). doi:10.1103/PhysRevB.36.1570
Article
Google Scholar
Shifren, L., Ferry, D.K.: A Wigner function based ensemble Monte Carlo approach for accurate incorporation of quantum effects in device simulation. J. Comput. Electron. 1, 55–58 (2002). doi:10.1023/A:1020711726836
Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004). doi:10.1103/PhysRevB.70.115319
Article
Google Scholar
Querlioz, D., Dollfus, P., Do, V.N., Bournel, A., Nguyen, V.L.: An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs. J. Comput. Electron. 5, 443–446 (2006). doi:10.1007/s10825-006-0044-3
Article
Google Scholar
Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015). doi:10.1016/j.jcp.2014.12.026
MathSciNet
Article
Google Scholar