Skip to main content

Phase-space functions: can they give a different view of quantum mechanics?


The Wigner function has been studied for more than eight decades, in the quest to develop a phase-space formulation of quantum mechanics. But, it is not the only phase-space formulation. Here, we discuss the properties of some of the various phase-space approaches and how they can give new insights into many quantum properties such as entanglement, which is not normally observable.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  Google Scholar 

  2. 2.

    Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99 (1949)

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Levinson, I.B.: Zh. Eksp. Teor. Fiz. 57, 660 (1969). [Sov. Phys.—JETP 30, 362 (1970)]

  4. 4.

    Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner–Boltzmann equation. Ann. Phys. 328, 220 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Dias, N.C., Prata, J.N.: Admissable states in quantum phase space. Ann. Phys. 313, 110 (2004)

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Ferry, D.K.: Effective potentials and the onset of quantization in ultrasmall MOSFETs. Superlattices Microstruct. 28, 419 (2000)

    Article  Google Scholar 

  7. 7.

    Ravaioli, U., Osman, M.A., Pötz, W., Kluksdahl, N., Ferry, D.K.: Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach. Physica 134B, 36 (1985)

    Google Scholar 

  8. 8.

    Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570 (1987)

    Article  Google Scholar 

  9. 9.

    Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)

  10. 10.

    Ferry, D.K., Grubin, H.L.: Quantum transport in semiconductor devices. Sol. State Phys. 49, 283 (1995)

    Google Scholar 

  11. 11.

    Carruthers, P., Zachariason, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245 (1983)

    Article  Google Scholar 

  12. 12.

    Ferry, D.K.: Quantum Mechanics, 2nd edn. Institute of Physics Publications, Bristol (2001)

    MATH  Book  Google Scholar 

  13. 13.

    Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    Google Scholar 

  14. 14.

    Takahashi, K.: Wigner and Husimi functions in quantum mechanics. J. Phys. Soc. Jpn. 55, 762 (1986)

    Article  Google Scholar 

  15. 15.

    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    MATH  Book  Google Scholar 

  16. 16.

    Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    MATH  Book  Google Scholar 

  17. 17.

    Luna-Acosta, G.A., Na, K., Reichl, L.E., Krokhin, A.: Band structure and quantum Poincaré sections of a classically chaotic quantum rippled channel. Phys. Rev. B 53, 3271 (1996)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Bäcker, A., Fürstberger, S., Schubert, R.: Poincaré Husimi representation of eigenstates in quantum billiards. Phys. Rev. E 70, 036204 (2004)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Weingartner, B., Rotter, S., Burgdörfer, J.: Simulation of electron transport through a quantum dot with soft walls. Phys. Rev. B 72, 115342 (2005)

    Article  Google Scholar 

  20. 20.

    Brunner, R., Meisels, R., Kuchar, F., Akis, R., Ferry, D.K., Bird, J.P.: Draining the sea of chaos: role of resonant transmission and reflection in an array of billiards. Phys. Rev. Lett. 98, 204101 (2007)

    Article  Google Scholar 

  21. 21.

    Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

  22. 22.

    Lee, H.-W.: Theory and application of the quantum phase-space distribution functions. Phys. Rep. 259, 147 (1995)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  24. 24.

    Mehta, C.L.: Phase-space formulation of the dynamics of canonical variables. J. Math. Phys. 5, 677 (1964)

    MATH  Article  Google Scholar 

  25. 25.

    Kirkwood, J.G.: Quantum statistics of almost classical assemblies. Phys. Rev. 44, 31 (1933)

    Article  Google Scholar 

  26. 26.

    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Sundarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Glauber, R.J.: In: DeWitt, C., Blandin, A., Cohen-Tannoudji, C. (eds.) Quantum Optics and Electronics. Gordon and Breach, New York (1965)

    Google Scholar 

  29. 29.

    Iafrate, G.J., Grubin, H.L., Ferry, D.K.: The Wigner distribution function. Phys. Lett. 87A, 145 (1982)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Einstein, E., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    MATH  Article  Google Scholar 

  31. 31.

    Bohm, D.: The Paradox of Einstein, Podolsky, and Rosen. (Quantum Theory). Prentice-Hall, Englewood Cliffs (1951). 15-19

    Google Scholar 

  32. 32.

    Ferry, D.K., Akis, R., Gilbert, M.J., Knezevic, I.: Do we need ‘quantum’ for quantum computing? Proc. SPIE 5115, 271 (2003)

    Article  Google Scholar 

  33. 33.

    Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron. Dev. 50, 769 (2003)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. K. Ferry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferry, D.K. Phase-space functions: can they give a different view of quantum mechanics?. J Comput Electron 14, 864–868 (2015).

Download citation


  • Quantum mechanics
  • Wigner function
  • Phase-space formulations
  • Probability