Abstract
The Wigner function has been studied for more than eight decades, in the quest to develop a phase-space formulation of quantum mechanics. But, it is not the only phase-space formulation. Here, we discuss the properties of some of the various phase-space approaches and how they can give new insights into many quantum properties such as entanglement, which is not normally observable.
Similar content being viewed by others
References
Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)
Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99 (1949)
Levinson, I.B.: Zh. Eksp. Teor. Fiz. 57, 660 (1969). [Sov. Phys.—JETP 30, 362 (1970)]
Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner–Boltzmann equation. Ann. Phys. 328, 220 (2013)
Dias, N.C., Prata, J.N.: Admissable states in quantum phase space. Ann. Phys. 313, 110 (2004)
Ferry, D.K.: Effective potentials and the onset of quantization in ultrasmall MOSFETs. Superlattices Microstruct. 28, 419 (2000)
Ravaioli, U., Osman, M.A., Pötz, W., Kluksdahl, N., Ferry, D.K.: Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach. Physica 134B, 36 (1985)
Frensley, W.R.: Wigner-function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570 (1987)
Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)
Ferry, D.K., Grubin, H.L.: Quantum transport in semiconductor devices. Sol. State Phys. 49, 283 (1995)
Carruthers, P., Zachariason, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245 (1983)
Ferry, D.K.: Quantum Mechanics, 2nd edn. Institute of Physics Publications, Bristol (2001)
Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)
Takahashi, K.: Wigner and Husimi functions in quantum mechanics. J. Phys. Soc. Jpn. 55, 762 (1986)
Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)
Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)
Luna-Acosta, G.A., Na, K., Reichl, L.E., Krokhin, A.: Band structure and quantum Poincaré sections of a classically chaotic quantum rippled channel. Phys. Rev. B 53, 3271 (1996)
Bäcker, A., Fürstberger, S., Schubert, R.: Poincaré Husimi representation of eigenstates in quantum billiards. Phys. Rev. E 70, 036204 (2004)
Weingartner, B., Rotter, S., Burgdörfer, J.: Simulation of electron transport through a quantum dot with soft walls. Phys. Rev. B 72, 115342 (2005)
Brunner, R., Meisels, R., Kuchar, F., Akis, R., Ferry, D.K., Bird, J.P.: Draining the sea of chaos: role of resonant transmission and reflection in an array of billiards. Phys. Rev. Lett. 98, 204101 (2007)
Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)
Lee, H.-W.: Theory and application of the quantum phase-space distribution functions. Phys. Rep. 259, 147 (1995)
Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)
Mehta, C.L.: Phase-space formulation of the dynamics of canonical variables. J. Math. Phys. 5, 677 (1964)
Kirkwood, J.G.: Quantum statistics of almost classical assemblies. Phys. Rev. 44, 31 (1933)
Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)
Sundarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)
Glauber, R.J.: In: DeWitt, C., Blandin, A., Cohen-Tannoudji, C. (eds.) Quantum Optics and Electronics. Gordon and Breach, New York (1965)
Iafrate, G.J., Grubin, H.L., Ferry, D.K.: The Wigner distribution function. Phys. Lett. 87A, 145 (1982)
Einstein, E., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bohm, D.: The Paradox of Einstein, Podolsky, and Rosen. (Quantum Theory). Prentice-Hall, Englewood Cliffs (1951). 15-19
Ferry, D.K., Akis, R., Gilbert, M.J., Knezevic, I.: Do we need ‘quantum’ for quantum computing? Proc. SPIE 5115, 271 (2003)
Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron. Dev. 50, 769 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ferry, D.K. Phase-space functions: can they give a different view of quantum mechanics?. J Comput Electron 14, 864–868 (2015). https://doi.org/10.1007/s10825-015-0731-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-015-0731-z