Abstract
In this paper, dual metal-double gate tunnel field effect transistor (DMG-DGTFET) is discussed for mono & hetero dielectric gate material. The hetero dielectric that we have used at the gate is a combination of SiO\(_{\text{2 }}\) and HfO\(_{\text{2 }}\). The DMG technique is used to optimize the performance of DGTFET along with the mono/hetero dielectric gate material. The results obtained from the simulation are discussed using energy band diagram, tunneling barrier width and compared with hetero & mono dielectric gate. With the application of hetero dielectric to the DMG-DGTFET, the advantages of both the techniques combine and the results shows that higher \(I_{ON} /I_{OFF}\) ratio \((2\times 10^{9})\) compared to the mono dielectric case \((2.5\times 10^{8})\). The average subthreshold slope also improves from 58 mV/decade in mono dielectric to 48 mV/decade in hetero dielectric DMG-DGTEFT. All the simulations are done in Synopsys TCAD for a channel length of 25 nm using the non-local tunneling model.
This is a preview of subscription content, access via your institution.







References
Hu, C., et al.: Prospect of tunneling green transistor for 0.1V CMOS. In: IEDM Technical Digest, pp. 16.1.1–16.1.4 (2010)
Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)
Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)
Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)
Luisier, M., Klimeck, G.: Performances comparisons of tunneling field effect transistors made of InSb, Carbon and GaSb-InAs broken gap heterostructures. In: IEDM Technical Digest, pp. 1–4 (2009)
Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunnelingfieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)
Avci, U.E., Rios, R., Kuhn, K.J., Young, I.A. : Comparision of Power and performance of the TFET and MOSFET and consideration of P-Tfet. In: IEEE-Nano, pp. 869–872 (2011)
Esaki, L.: IBM Thomas J. Watson Research center Long Journey into Tunneling Nobel lecture (1973)
Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors, 2009 Edition
Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: Theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6), 064503 (2009)
Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat,K.: Double gate strained-Ge hetero structure tunneling FET (TFET) with record high drive currents and \(<\)60 mV/decsubthreshold slope. In: IEDM Tech. Dig., pp. 1–3 (2008)
Boucart, K., Ionescu, A.M.: Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid State Electron. 51(11/12), 1500–1507 (2007)
Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)
Vishnoi, R., Jagadesh Kumar, M.: Compact analytical model of dual material gate tunneling field- effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61, 6 (2014)
Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)
Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001–085001 (2011)
Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)
Chaudhary, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 1463–1467 (2004)
Lee, M.J., Choi, W.Y.: Effect of device geometry on hetero gate dielectric tunneling field effect transistor. IEEE Electronic Device Lett. 22, 10 (2012)
Bhowmick, B., Baishy, S.: Hetero double gate-dielectric tunnel FET with record high Ion/Ioff ratio. In: IJCA Conference (ICVCI) (4), pp. 11–13 (2011)
Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)
Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide- semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)
Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91(5), 053 102-1–053 102-3 (2007)
Saurabh, S., Kumar, M.J.: Estimation and compensation of process induced variations in nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans. Device Mater. Rel. 10(3), 390–395 (2010)
Synopsys, TCAD Sentaurus device, ver. D2010–03 (2010)
Fukuda, K., Mori, T., Ota, H.: On the non-local modelling of Tunnel-FET In: SISPAD, pp. 284–287 (2012)
Darwish, M.N., et al.: An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Electron Devices 44(9), 1529–1538 (1997)
Lombardi, C., et al.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. 7(11), 1164–1171 (1988)
Paasch, G., Übensee, H.: A modified local density approximation: electron density in inversion layers. Physica Status Solidi (b) 113(1), 165–178 (1982)
Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503 (2011)
Yipeng, J., Kangliang, W., Taihuan, W., Gang, D., Xiaoyan, L.: Comparison of band-to-band tunneling models in Si and Si-Ge junctions. J. Semiconduct. 34, 9 (2013)
Jagadesh Kumar, M.: Novel attributes of a dual metal gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 2 (2011)
Ranade, P., Yeo, Y.C., Lu, Q., Takeuchi, H., King, T.J., Hu, C.: Molybdenum as a gate electrode for deep sub-micron CMOS technology. Proc. MRS Symp. 611, C3.2.1–C3.2.6 (2000)
Hasan, M., Park, H., Yang, H., Hwang, H., Jung, H.S., Lee, J.H.: Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(10), 103 510 1–103 510 3 (2007)
Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)
Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1959)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jain, P., Prabhat, V. & Ghosh, B. Dual metal-double gate tunnel field effect transistor with mono/hetero dielectric gate material. J Comput Electron 14, 537–542 (2015). https://doi.org/10.1007/s10825-015-0685-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-015-0685-1