Skip to main content
Log in

Optimization of optical absorption coefficient in double modified Pöschl–Teller quantum wells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, the intersubband optical absorption coefficient in double quantum wells (QWs) represented by a modified Pöschl–Teller confining potential is optimized. This potential is well suited for such purposes as it can easily become asymmetrical by a correct choice of its parameters set. By using the particle swarm optimization algorithm and numerical solution of the Schrödinger equation, accompanied with the perturbation theory, we found the optimal structure that the optical absorption coefficient is maximum. Applying this algorithm to double modified Pöschl–Teller QWs structure shows that the total optical absorption coefficient for this structure is \(1.22\times 10^6\, \hbox {m}^{-1}\). Then, the refractive index changes is investigated by using the density matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Journal of Physics: Condensed Matter 19, 395024 (2007)

    Google Scholar 

  2. Baskoutas, S., Paspalakis, E., Terzis, A.F.: Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots. Physical Review B 74, 153306 (2006)

    Article  Google Scholar 

  3. Naimi, Y., Jafari, A.R.: Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity. Journal of Computational Electronics 11, 414 (2012)

    Article  Google Scholar 

  4. Numai, T.: Fundamentals of Semiconductor Lasers. Springer, New York (2004)

    Google Scholar 

  5. Baskoutas, S., Garoufalis, C., Terzis, A.F.: Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field. The European Physical Journal B 84, 241 (2011)

    Article  Google Scholar 

  6. Jafari, A.R., Naimi, Y.: Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center. Journal of Computational Electronics 12, 36 (2013)

    Article  Google Scholar 

  7. Keshavarz, A., Zamani, N.: Optical Properties of Modified Pöschl-Teller Quantum Well with Position-Dependent Mass. Journal of Computational and Theoretical Nanoscience 10, 2155 (2013)

    Article  Google Scholar 

  8. Zhang, C.J., Guo, K.X.: Polaron effects on the optical absorptions in asymmetrical semi-parabolic quantum wells. Physica E: Low-dimensional Systems and Nanostructures 39, 103 (2007)

    Article  MATH  Google Scholar 

  9. Liang, S., Xie, W., Sarkisyan, H.A., Meliksetyan, A.V., Shen, H.: Electronic and optical properties of a nanoring in the presence of external magnetic field. Superlattices and Microstructures 51, 868 (2012)

    Article  Google Scholar 

  10. Ungan, F., Ozturk, E., Ergun, Y., Sokmen, I.: The variation of electronic properties with the doping concentration of modulation-doped \(Al_ xGa_{ 1x} AsGaAs\) double quantum wells. Superlattices and Microstructures 41, 22 (2007)

    Article  Google Scholar 

  11. Yesilgul, U.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in symmetric double semi-V-shaped quantum wells. Journal of Luminescence 132, 765 (2012)

    Article  Google Scholar 

  12. Keshavarz, A., Karimi, M.J.: Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells. Physics Letters A 2675, 374 (2010)

    Google Scholar 

  13. Leobandung, E., Guo, L., Chou, S.Y.: Single hole quantum dot transistors in silicon. Applied physics letters 67, 2338 (1995)

    Article  Google Scholar 

  14. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Physical Review A 57, 120 (1998)

    Article  Google Scholar 

  15. Imamura, K., Sugiyama, Y., Nakata, Y., Murol, S., and Yokoyama, N.:(1995) New optical memory structure using self-assembled InAs quantum dots, Energy (eV), 11, 11

  16. Jiang, X., Li, S.S., Tidrow, M.Z.: Study of intersubband transition in quantum dots and quantum dot infrared photodetectors. Physica E 5, 27 (1999)

    Article  Google Scholar 

  17. Kirstaedter, N., Schmidt, O.G., Ledentsov, N.N., Bimberg, D., Ustinov, V.M., Egorov, A.Y., Alferov, Z.I.: Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied physics letters 69, 1226 (1996)

    Article  Google Scholar 

  18. Kazarinov, R.F., Suris, R.A.: Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  19. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553 (1994)

    Article  Google Scholar 

  20. Turton, R.J., Jaros, M.: Intersubband optical transitions in Si-Si 0.5 Ge 0.5 superlattices. Applied physics letters 54, 1986 (1989)

    Article  Google Scholar 

  21. Noda, S., Uemura, T., Yamashita, T., Sasaki, A.: All-optical modulation using an n-doped quantum-well structure. Journal of applied physics 68, 6529 (1990)

    Article  Google Scholar 

  22. Y ldrm, H., Tomak, M.: (2005) Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72, 115340

  23. Wang, G., Guo, Q.: Nonlocal effects on second-harmonic generation in a Pöschl-Teller quantum well. The European Physical Journal B 63, 219 (2008)

    Article  Google Scholar 

  24. Alireza Hakimyfard, M.G., Barseghyan, A.A., Kirakosyan, in: Proceedings of the Conference on Laser-Physics 2008, Armenia, 2008, pp. 52–56

  25. Yildirim, H., Tomak, M.: Intensity-dependent refractive index of a Pöschl-Teller quantum well. Journal of applied physics 99, 093103 (2006)

    Article  Google Scholar 

  26. Carrington Jr, T.: Perturbation theory for bending potentials. Molecular Physics 70, 757 (1990)

    Article  Google Scholar 

  27. Iachello, F., Oss, S.: Algebraic model of bending vibrations of complex molecules. Chemical physics letters 205, 285 (1993)

    Article  Google Scholar 

  28. Iachello, F., Oss, S.: Vibrational spectroscopy and intramolecular relaxation of benzene. The Journal of chemical physics 99, 7337 (1993)

    Article  Google Scholar 

  29. Radovanovi\(\acute{c}\), J., Milanovi\(\acute{c}\), V., Ikoni\(\acute{c}\), Z., and Indjin, D.: (2000) Intersubband absorption in Pöschl-Teller-like semiconductor quantum wells, Physics Letters A, 269, 179

  30. Hasan, Y., Mehmet, T.: Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B 72, 115340 (2005)

    Article  Google Scholar 

  31. Aytekin, O., Turgut, S., Tomak, M.: Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic elds. Physica E 44, 1612 (2012)

    Article  Google Scholar 

  32. Unal, Ustoglu: V., Aksahin, E., Aytekin, O., Electric eld effect on the refractive index changes in a Modied-Pöschl-Teller quantum well. Physica E 47, 103 (2013)

    Article  MathSciNet  Google Scholar 

  33. Karabulut, I., Atav, Ü., Safak, H., Tomak, M.: Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well. The European Physical Journal B 55, 283 (2007)

    Article  Google Scholar 

  34. Ünlü, S., Karabulut, I., Safak, H.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E: Low-dimensional Systems and Nanostructures 33, 319 (2006)

    Article  Google Scholar 

  35. Chen, B., Guo, K.X., Wang, R.Z., Zhang, Z.H., Liu, Z.L.: Linear and nonlinear intersubband optical absorption in double triangular quantum wells. Solid State Communications 149, 310 (2009)

  36. Jafari, A.R., Naimi, Y., Davatolhagh, S.: Optical properties of nano-multi-layered quantum dot: oscillator strength, absorption coefficient and refractive index. Optical and Quantum Electronics 45, 517 (2013)

  37. West, L.C., Eglash, S.J.: First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Applied Physics Letters 46, 1156 (1985)

    Article  Google Scholar 

  38. Coon, D.D., Karunasiri, R.P.G., Liu, L.Z.: Narrow band infrared detection in multiquantum well structures. Applied Physics Letters 47, 289 (1985)

    Article  Google Scholar 

  39. Kasapoglu, E.: The hydrostatic pressure and temperature effects on donor impurities in \(GaAs/Ga_{1 x} Al_ x As\) double quantum well under the external fields. Physics Letters A 373, 140 (2008)

    Article  Google Scholar 

  40. Ungan, F., Kasapoglu, E., Sokmen, I.: Intersubband optical absorption coefficients and refractive index changes in modulation-doped asymmetric double quantum well. Solid State Communications 151, 1415 (2011)

    Article  Google Scholar 

  41. Harrison, P.: Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley, New York (2005)

    Book  Google Scholar 

  42. Flügge, S.: Practical quantum mechanics. Springer, Berlin (1974)

  43. Ahn, D., Chuang, S.L.: Intersubband optical absorption in a quantum well with an applied electric field. Physical Review B 35, 4149 (1987)

  44. Karabulut, I., Safak, H., Tomak, M.: Nonlinear optical rectification in asymmetrical semiparabolic quantum wells. Solid state communications 135, 735 (2005)

    Article  Google Scholar 

  45. Eberhart, R., Kennedy, J.: (1995) A new optimizer using particle swarm theory, In Micro Machine and Human Science, 1995. MHS95., Proceedings of the Sixth International Symposium on (pp. 39–43). IEEE

  46. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. Antennas and Propagation, IEEE Transactions on 52, 397 (2004)

  47. Keshavarz, A., Zamani, N.: Optimization of optical absorption coefficient in asymmetric double rectangular quantum wells by PSO algorithm. Optics Communications. 294, 401 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Parang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parang, Z., Keshavarz, A. & Zamani, N. Optimization of optical absorption coefficient in double modified Pöschl–Teller quantum wells. J Comput Electron 13, 1020–1025 (2014). https://doi.org/10.1007/s10825-014-0625-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0625-5

Keywords

Navigation