Journal of Computational Electronics

, Volume 13, Issue 4, pp 996–1009 | Cite as

Influence of constant electric field on circular photogalvanic effect in material with Rashba Hamiltonian

  • V. I. Konchenkov
  • S. V. KryuchkovEmail author
  • D. V. Zav’yalov


An appearance of a direct current perpendicularly to a constant component of an electric field in material with Rashba Hamiltonian under the influence of an elliptically polarized wave is investigated in one-subband approximation. On its physical nature this effect is close to a circular photogalvanic effect on intraband transitions. The effect is studied on the base of two approaches: investigations of Boltzmann kinetic equation in a constant collision frequency approximation and semiclassical Monte Carlo simulations, which immediately takes into account microscopic processes of charge carriers scattering on optical and acoustical phonons. Monte Carlo modelling allows us to determine a mean relaxation time and its dependencies on electric field strengths and on the energy of optical phonons. On the base of these estimations a possibility of using a constant relaxation time approximation is justified. It is confirmed that the main contribution to the effects of transverse rectification is made by inelastic scattering of electrons on optical phonons. A comparison of results of Monte Carlo simulations and calculations on the base of a constant collision frequency approximation is presented.


Rashba Hamiltonian Non-additive energy spectrum Circular photogalvanic effect Monte Carlo simulations 



The work is supported by the Grant of RFBR No. 13-02-97033 r_povolzh’e_a and with the funding of the Ministry of Education and Science of the Russian Federation within the base part of the State task No.2014/411 (Project Codes: 522 and 3154). The work is performed using the NVIDIA Kepler coprocessor, acquired within the framework of The Program of a Strategical Development of the Volgograd State Technical University.


  1. 1.
    Andronov, A.A., Nefedov, I.M., Sosnin, A.V.: Charge transport in superlattices with low-strength barriers and the problem of a terahertz bloch oscillator. Semiconductors 37(3), 360–366 (2003)CrossRefGoogle Scholar
  2. 2.
    Bratman, V.L., Litvak, A.G., Suvorov, E.V.: Mastering the terahertz domain: sources and applications. Phys-Usp 54, 837–870 (2011)CrossRefGoogle Scholar
  3. 3.
    Mensah, S.Y., Shmelev, G.M., Epshtein, E.M.: Mutual rectification of two electromagnetic waves in a superlattice. Sov J Phys 31(6), 112–113 (1988)Google Scholar
  4. 4.
    Shorokhov, A.V., Khvastunov, N.N., Hyart, T., Alekseev, K.N.: Generation of direct current in a semiconductor superlattice under the action of a bichromatic field as a parametric effect. J Exp Theor Phys 111(5), 822–829 (2010)CrossRefGoogle Scholar
  5. 5.
    Zavyalov, D.V., Kryuchkov, S.V., Marchuk, E.V.: On the possibility of transverse current rectification in graphene. Tech Phys Lett 34(11), 915–917 (2008)CrossRefGoogle Scholar
  6. 6.
    Zavyalov, D.V., Kryuchkov, S.V., Tyulkina, T.A.: Effect of rectification of current induced by an electromagnetic wave in graphene: a numerical simulation. Semiconductors 44(7), 879–883 (2010)CrossRefGoogle Scholar
  7. 7.
    Karch, J., Olbrich, P., Schmalzbauer, M., Zoth, C., Brinsteiner, C., Fehrenbacher, M., Wurstbauer, U., Glazov, M.M., Tarasenko, S.A., Ivchenko, E.L., Weiss, D., Eroms, J., Yakimova, R., Lara-Avila, S., Kubatkin, S., Ganichev, S.D.: Dynamic Hall effect driven by circularly polarized light in a graphene layer. Phys Rev Lett 105, 227402 (2010)CrossRefGoogle Scholar
  8. 8.
    Karch, J., Drexler, C., Olbrich, P., Fehrenbacher, M., Hirmer, M., Glazov, M.M., Tarasenko, S.A., Ivchenko, E.L., Birkner, B., Eroms, J., Weiss, D., Yakimova, R., Lara-Avila, S., Kubatkin, S., Ostler, M., Seyller, T., Ganichev, S.D.: Terahertz radiation driven chiral edge currents in graphene. Phys Rev Lett 107, 276601 (2011)Google Scholar
  9. 9.
    Jiang, C., Shalygin, V.A., Danilov, S.N., Glazov, M.M., Yakimova, R., Lara-Avila, S., Kubatkin, S., Ganichev, S.D.: Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a \({\text{ CO }}_2\) laser. Phys Rev B 84, 125429 (2011)CrossRefGoogle Scholar
  10. 10.
    Kiselev, YuYu., Golub, L.E.: Optical and photogalvanic properties of graphene superlattices formed by periodic strain. Phys Rev B 84, 235440 (2011)CrossRefGoogle Scholar
  11. 11.
    Zavyalov, D.V., Konchenkov, V.I., Kryuchkov, S.V.: Transverse current rectification in a graphene-based superlattice. Semiconductors 46(1), 109–116 (2012)CrossRefGoogle Scholar
  12. 12.
    Kryuchkov, S.V., Kukhar, E.I.: Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice. Phys E 46, 25–29 (2012)CrossRefGoogle Scholar
  13. 13.
    Kryuchkov, S.V., Kukhar, E.I.: Mutual rectification of cnoidal and sinusoidal electromagnetic waves with orthogonal polarization planes in a graphene-based superlattice. Optics Spectrosc 112(6), 914–919 (2012)CrossRefGoogle Scholar
  14. 14.
    Zavyalov, D.V., Kryuchkov, S.V., Kukhar, E.I.: Effect of transverse entrainment of charge carriers by the field of two electromagnetic waves in a semiconductor. Phys Solid State 54(9), 1853–1856 (2012)CrossRefGoogle Scholar
  15. 15.
    Ivchenko, E.L.: Circular photogalvanic effect in nanostructures. Phys-Usp 45, 1299–1303 (2002)CrossRefGoogle Scholar
  16. 16.
    Ganichev, S.D., Prettl, W.: Spin photocurrents in quantum wells. J Phys 15, R935–R983 (2003)Google Scholar
  17. 17.
    Gusev, G.M., Kvon, Z.D., Magarill, L.I., Palkin, A.M., Sozinov, V.I., Shegai, O.A., Entin, M.V.: Resonant photovoltaic effect in an inversion layer at the surface of a semiconductor. JETP Lett 46(1), 33–36 (1987)Google Scholar
  18. 18.
    Zhang, Q., Wang, X.Q., Yin, C.M., Xu, F.J., Tang, N., Shen, B., Chen, Y.H., Chang, K., Ge, W.K., Ishitani, Y., Yoshikawa, A.: Strong circular photogalvanic effect in ZnO epitaxial films. Appl Phys Lett 97, 041907 (2010)CrossRefGoogle Scholar
  19. 19.
    Yu, J.L., Chen, Y.H., Liu, Y., Jiang, C.Y., Ma, H., Zhu, L.P.: Spectra of Rashba- and Dresselhaus-type circular photogalvanic effect at interband excitation in GaAs/AlGaAs quantum wells and their behaviors under external strain. Appl Phys Lett 100, 152110 (2012)Google Scholar
  20. 20.
    Ganichev, S.D., Bel’kov, V.V., Schneider, P., Ivchenko, E.L., Tarasenko, S.A., Wegscheider, W., Weiss, D., Schuh, D., Beregulin, E.V., Prettl, W.: Resonant inversion of the circular photogalvanic effect in n-doped quantum wells. Phys Rev B 68, 035319 (2003)CrossRefGoogle Scholar
  21. 21.
    Tarasenko, S.A.: Direct current driven by AC electric field in quantum wells. Phys Rev B 83, 035313 (2011)CrossRefGoogle Scholar
  22. 22.
    Olbrich, P., Tarasenko, S.A., Reitmaier, C., Karch, J., Plohmann, D., Kvon, Z.D., Ganichev, S.D.: Observation of the orbital circular photogalvanic effect. Phys Rev B 79, 121302(R) (2009)CrossRefGoogle Scholar
  23. 23.
    Giglberger, S., Golub, L.E., Belkov, V.V., Danilov, S.N., Schuh, D., Gerl, C., Rohlng, F., Stahl, J., Wegscheider, W., Weiss, D., Prettl, W., Ganichev, S.D.: Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys Rev B 75, 035327 (2007)Google Scholar
  24. 24.
    Lechner, V., Golub, L.E., Olbrich, P., Stachel, S., Schuh, D., Wegscheider, W., Belkov, V.V., Ganichev, S.D.: Tuning of structure inversion asymmetry by the -doping position in (001)-grown GaAs quantum wells. Appl Phys Lett 94, 242109 (2009)CrossRefGoogle Scholar
  25. 25.
    Rashba, E.I.: Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov Phys Solid State 2, 1109 (1960)Google Scholar
  26. 26.
    Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys Rev 100, 580–586 (1955)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ganichev, S.D., Ivchenko, E.L., Danilov, S.N., Eroms, J., Wegscheider, W., Weiss, D., Prettl, W.: Conversion of spin into directed electric current in quantum wells. Phys Rev Lett 86, 4358 (2001)CrossRefGoogle Scholar
  28. 28.
    Ganichev, S.D., Ivchenko, E.L., Prettl, W.: Photogalvanic effects in quantum wells. Phys E 14, 166–171 (2002)CrossRefGoogle Scholar
  29. 29.
    Ivchenko, E.L., Tarasenko, S.A.: Monopolar optical orientation of electron spins in bulk semiconductors and heterostructures. J Exp Theor Phys 99(2), 379–385 (2004)CrossRefGoogle Scholar
  30. 30.
    Cartoixa, X., Ting, D.Z.-Y., McGill, T.C.: Theoretical investigations of spin splittings and optimization of the Rashba coefficient in asymmetric AlSb/InAs/GaSb heterostructures. J Comput Electron 1, 141–146 (2002)CrossRefGoogle Scholar
  31. 31.
    Maiti, S.K.: Determination of Rashba and Dresselhaus spin-orbit fields. J Appl Phys 110, 064306 (2011)CrossRefGoogle Scholar
  32. 32.
    Nitta, J., Akazaki, T., Takayanagi, H., Enoki, T.: Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys Rev Lett 78, 1335 (1997)CrossRefGoogle Scholar
  33. 33.
    Nedjalkov, M., Vasileska, D., Dimov, I., Arsov, G.: Mixed initial-boundary value problem in particle modeling of microelectronic devices. Monte Carlo Methods Appl 13(4), 299–331 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Grasser, T., Kosik, R., Jungemann, C., Kosina, H., Selberherr, S.: Nonparabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J Appl Phys 97, 093710 (2005)CrossRefGoogle Scholar
  35. 35.
    Ting, D.Z.-Y., Cartoixa, X., McGill, T.C., Smith, D.I., Schulman, J.N.: Modeling spin-dependent transport in InAs/GaSb/AlSb resonant tunneling structures. J Comput Electron 1, 147–151 (2002)CrossRefGoogle Scholar
  36. 36.
    Wang, S., Liu, H., Gao, B., Zhao, Q.: Monte Carlo transport simulation of velocity undershoot in zinc blende and wurtzite InN. Phys Status Solidi B 249(9), 1761–1764 (2012)CrossRefGoogle Scholar
  37. 37.
    Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and series. Gordon and Breach Science Publishers, New York (1992)Google Scholar
  38. 38.
    Kireev, P.S.: Physics of semiconductors. Vysshaya Shkola, Moscow (1975) (in Russian)Google Scholar
  39. 39.
    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. IOP Publishing LTD, Bristol and New York (1988)CrossRefzbMATHGoogle Scholar
  40. 40.
    Sobol, I.M.: Monte Carlo numerical methods. Nauka, Moscow (1973) (in Russian)Google Scholar
  41. 41.
    Bonch-Bruevich, V.L., Kalashnikov, S.G.: Physics of semiconductors. Nauka, Moscow (1977) (in Russian)Google Scholar
  42. 42.
    Bercioux, D.: Spin-dependent transport in nanostructures (2005). Accessed 18 Sept 2014
  43. 43.
    Vasko, F.T., Ryzhii, V.: Photoconductivity of an intrinsic graphene. Phys Rev B 77, 195433 (2008)Google Scholar
  44. 44.
    Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical methods for physicists. A comprehensive guide. Elsiever, New York (2013)zbMATHGoogle Scholar
  45. 45.
    Kashurnikov, V.A., Krasavin, A.V.: Numerical methods of quantum statistics. FIZMATLIT, Moskow (2010). (in Russian)Google Scholar
  46. 46.
    Panneton, F., L’ecuyer, P.: On the xorshift random number generators. TOMACS 15(4), 346–361 (2005)CrossRefGoogle Scholar
  47. 47.
    PyCUDA. Accessed 18 Sept 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Konchenkov
    • 1
  • S. V. Kryuchkov
    • 1
    • 2
    Email author
  • D. V. Zav’yalov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia
  2. 2.Physical Laboratory of Low-Dimensional SystemsVolgograd State Socio Pedagogical UniversityVolgogradRussia

Personalised recommendations