Skip to main content
Log in

Impact of Stone-Wales and lattice vacancy defects on the electro-thermal transport of the free standing structure of metallic ZGNR

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We report the effect of topological as well as lattice vacancy defects on the electro-thermal transport properties of the metallic zigzag graphene nano ribbons at their ballistic limit. We employ the density function theory–Non equilibrium green’s function combination to calculate the transmission details. We then present an elaborated study considering the variation in the electrical current and the heat current transport with the change in temperature as well as the voltage gradient across the nano ribbons. The comparative analysis shows, that in the case of topological defects, such as the Stone-Wales defect, the electrical current transport is minimum. Besides, for the voltage gradient of 0.5 Volt and the temperature gradient of 300 K, the heat current transport reduces by \({\sim }62\,\%\) and \({\sim }50\,\%\) for the cases of Stones-Wales defect and lattice vacancy defect respectively, compared to that of the perfect one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Balandin, A.A.: The heat is on: graphene applications, thermal management of nanoelectronics and 3-D electronics. IEEE Nanotechnol. Mag. 5, 15–19 (2011)

    Article  Google Scholar 

  2. Balandin, A.A.: Chill out: new materials and designs can keep chips cool. IEEE Spectr. 29, 29–33 (2009)

    Google Scholar 

  3. Novoselov, K., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. Novoselov, K., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nat. Lett. 438, 197–200 (2005)

    Article  Google Scholar 

  5. Wong, HSPhilip, Akinwande, D.: Carbon Nanotube and Graphene Device Physics. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  6. Srivastava, N., et al.: On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8, 4 (2009)

    Article  Google Scholar 

  7. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  Google Scholar 

  8. Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P.: Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101(9), 096802 (2008)

    Article  Google Scholar 

  9. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. Lett. 6, 147–150 (2011)

    Article  Google Scholar 

  10. Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805-1–206805-4 (2007)

    Article  Google Scholar 

  11. Zhang, A., et al.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Appl. Phys. Lett. 98(023105–1), 023105-1–023105-3 (2011)

    Google Scholar 

  12. Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1231 (2008)

    Article  Google Scholar 

  13. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56, 8 (2009)

    Google Scholar 

  14. Khatami, Y., Kang, J., Banerjee, K.: Graphene nanoribbon based negative resistance device for ultra-low voltage digital logic applications. Appl. Phys. Lett. 102, 043114 (2013)

    Article  Google Scholar 

  15. Sahin, H., Senger, R.T.: First pinciple calculations of spin dependent conductance of graphene flakes. Phys. Rev. B 78, 205423-1–205423-8 (2008)

    Article  Google Scholar 

  16. Areshkin, D.A., et al.: Ballistic transport in graphene nanostrips in presence of disorder: importance of edge effects. ACS Nano Lett. 7(1), 204–210 (2007)

    Article  Google Scholar 

  17. Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nat. Lett. 444, 347–349 (2006)

    Article  Google Scholar 

  18. Yoon, Y., Guo, J.: Effects of edge roughness in graphene nanoribbon transistors. Appl. Phys Lett. 91, 073103 (2007)

    Article  Google Scholar 

  19. Ren, Y., Chen, K.-Q.: Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys. 107, 044514 (2010)

    Article  Google Scholar 

  20. Yazdanpanah, A., et al.: A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Trans. Electron Devices 59(2), 433–440 (2012)

    Article  Google Scholar 

  21. Ouyan, Y., Guo, J.: A theoretical study on thermoelectric properties of graphene nanoribbons. Appl. Phys. Lett. 94, 263107 (2009)

    Article  Google Scholar 

  22. Ni, X., et al.: Disorder enhances thermoelectric figure of merit in armchair graphene nano ribbons. Appl. Phys. Lett. 95, 192114 (2009)

    Article  Google Scholar 

  23. Yokomizo, Y., Nakamura, J.: Giant Seebeck coefficient of the graphene/h-BN superlattices. Appl. Phys. Lett. 103, 113901 (2013)

    Article  Google Scholar 

  24. Aksamija, Z., Knezevic, I.: Thermal transport in graphene nanoribbons supported on \(\text{ SiO }_{2}\). Phys. Rev. B 86, 165426 (2012)

    Article  Google Scholar 

  25. Evans, W.J., Hu, L., Keblinski, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effects of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010)

    Article  Google Scholar 

  26. Karamitaheri, H., et al.: Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons. IEEE Trans. Electron Devices 60, 7 (2013)

    Article  Google Scholar 

  27. Sengupta, A., Mahapatra, S.: Negative differential resistance and effect of defects and deformation in MoS2 armchair nanoribbon metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 114, 194513-1–194513-5 (2013)

    Google Scholar 

  28. Soler, J., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.:Condens. Matt. 14, 2745–2779 (2002)

    Google Scholar 

  29. The ATK-DFT package. Atomistix ToolKit Reference Manual. http://www.quantumwise.com/

  30. Monkhorst, H.J., Pack, J.D.: On special points for Brillouin zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  Google Scholar 

  31. Ma, J., Alfe, D., Michaelides, A., Wang, E.: Stone-Wales defects in graphene and oher plannar sp2-bonded materials. Phys. Rev. B 80, 033407 (2009)

    Article  Google Scholar 

  32. Zsoldos, I.: Effect of topological defects on graphene geometry and stability. Nanotechnol. Sci. Appl. 2010(3), 101–106 (2010)

    Article  Google Scholar 

  33. Song, L.L., et al.: Dangling bond states, edge magnetism, and edge reconstruction in pristine and B/N-terminated zigzag graphene nanoribbons. J. Phys. Chem. C 114, 12145–12150 (2010)

    Article  Google Scholar 

  34. Girit, C.O., et al.: Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009)

    Article  Google Scholar 

  35. Lundstrom M.: Thermoelectric effects—mathematics, near-equilibrium transport, fundamentals and applications. http://www.nanoHUB.org (2011)

  36. Mazzamuto, F., et al.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)

    Article  Google Scholar 

  37. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. 1, 223–231 (1957)

    Article  MathSciNet  Google Scholar 

  38. Buttiker, M., et al.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  Google Scholar 

  39. Fisher, D.S., Lee, P.A.: Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851–6854 (1981)

  40. Esfarjani, K., Zebarjadi, M., Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006)

    Article  Google Scholar 

  41. Jiang, J.-W., Wang, J.-S., Li, B.: A nonequilibrium Greens function study of thermoelectric properties in single-walled carbon nanotubes. J. Appl. Phys. 109, 014326 (2011)

    Article  Google Scholar 

  42. Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)

    Article  Google Scholar 

  43. Verma, R., Bhattacharya, S., Mahapatra, S.: Solution of Time Dependent Joule Heat Equation for a Graphene Sheet under Thomson Effect. IEEE Trans. Electron Devices 60, 10 (2013)

    Google Scholar 

  44. Jeong, C.: On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. A. Sengupta thanks DST, Govt. of India, for the DST Post-doctoral Fellowship in Nano Science and Technology.

Dr. S. Bhattacharya thanks DST, Govt. of India, for the Inspire-faculty grant, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, D., Sengupta, A., Bhattacharya, S. et al. Impact of Stone-Wales and lattice vacancy defects on the electro-thermal transport of the free standing structure of metallic ZGNR. J Comput Electron 13, 862–871 (2014). https://doi.org/10.1007/s10825-014-0601-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0601-0

Keywords

Navigation